首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3627篇
  免费   212篇
  国内免费   245篇
安全科学   83篇
废物处理   16篇
环保管理   859篇
综合类   1261篇
基础理论   676篇
环境理论   60篇
污染及防治   196篇
评价与监测   203篇
社会与环境   549篇
灾害及防治   181篇
  2024年   10篇
  2023年   68篇
  2022年   93篇
  2021年   118篇
  2020年   101篇
  2019年   168篇
  2018年   152篇
  2017年   205篇
  2016年   232篇
  2015年   198篇
  2014年   135篇
  2013年   310篇
  2012年   217篇
  2011年   269篇
  2010年   188篇
  2009年   210篇
  2008年   174篇
  2007年   212篇
  2006年   157篇
  2005年   119篇
  2004年   102篇
  2003年   101篇
  2002年   82篇
  2001年   72篇
  2000年   90篇
  1999年   78篇
  1998年   39篇
  1997年   44篇
  1996年   21篇
  1995年   17篇
  1994年   15篇
  1993年   32篇
  1992年   10篇
  1991年   10篇
  1990年   10篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1977年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有4084条查询结果,搜索用时 15 毫秒
891.
Cattle activity greatly influences plant species composition and biomass production of grassland ecosystems. Dung deposition by cattle together with grazing and trampling can be considered as one of the important factors driving vegetation dynamics in pastures. The objective of this study was to investigate at 10-cm and 1-month resolution the plant community dynamics induced by dung deposition in two plant communities (a mesotrophic and an oligotrophic grassland) in a pasture of the Swiss Jura Mountains. Vegetation was sampled four or three times during the vegetation period in contiguous 10 cm × 10 cm quadrats from the centre of the dung pat to a distance of 60 cm. A lower grazing intensity near the dung pat was recorded for all observation periods. In the mesotrophic grassland the canopy was higher near the dung pat already one week after dung deposition. Vegetation around dung pats was submitted to two opposite fertilizing and grazing gradients, which induced changes in vegetation texture and structure at fine scale and short term. We observed a positive rank correlation between species turnover and distance to the dung for both communities, suggesting a seasonal stabilizing effect of dung on the plant composition of their direct surroundings (0–10 cm) likely due to cattle avoidance. Since dung pats are dropped every year in different locations, they create in the pasture a shifting mosaic of nutrient availability and grazing intensity inducing at seasonal scale micro-successions in plant communities.  相似文献   
892.
This article seeks to explain how and why church congregations mobilise on environmental issues and what – if anything – is distinctive about that mobilisation. Building on and adapting Resource Mobilisation Theory (RMT), we develop the idea of “spiritual resources” to help explain how a collection of spiritual identities, values, symbols and narratives can facilitate distinctive collective action on environmental issues. Our analysis draws on data derived from an in-depth case study of climate active groups in Scotland. It includes content analysis of websites, news stories as well as ethnographic observation of selected church and secular groups engaged in climate activity. We find church groups do enjoy a distinct set of resources – comprising tradition, rituals and symbols shaped by theology and doctrine – which are not wholly captured by other explanations of climate mobilisation. While these spiritual resources do not directly translate into specific environmental or climate action they can, especially when combined with other resources, lead to environmental activities distinctly motivated, and distinctly practised at the individual and community level.  相似文献   
893.
Clearance and perturbation of Amazonian forests are one of the greatest threats to tropical biodiversity conservation of our times. A better understanding of how soil communities respond to Amazonian deforestation is crucially needed to inform policy interventions that effectively protect biodiversity and the essential ecosystem services it provides. We assessed the impact of deforestation and ecosystem conversion to arable land on Amazonian soil biodiversity through a meta-analysis. We analyzed 274 pairwise comparisons of soil biodiversity in Amazonian primary forests and sites under different stages of deforestation and land-use conversion: disturbed (wildfire and selective logging) and slash-and-burnt forests, pastures, and cropping systems. Overall, 60% and 51% of responses of soil macrofauna and microbial community attributes (i.e., abundance, biomass, richness, and diversity indexes) to deforestation were negative, respectively. We found few studies on mesofauna (e.g., microarthropods) and microfauna (e.g., protozoa and nematodes), so those groups could not be analyzed. Macrofauna abundance and biomass were more vulnerable to the displacement of forests by pastures than by agricultural fields, whereas microbes showed the opposite pattern. Effects of Amazonian deforestation on macrofauna were more detrimental at sites with mean annual precipitation >1900 mm, and higher losses of microbes occurred in highly acidic soils (pH < 4.5). Limited geographic coverage, omission of meso- and microfauna, and low taxonomic resolution were main factors impairing generalizations from the data set. Few studies assessed the impacts of within-forest disturbance (wildfires and selective logging) on soil species in Amazonia, where logging operations rapidly expand across public lands and more frequent severe dry seasons are increasing the prevalence of wildfires.  相似文献   
894.
Anthropogenic impacts on biodiversity can lead to biotic homogenization (BH) and biotic differentiation (BD). BH is a process of increasing similarity in community composition (including taxonomic, functional, and phylogenetic components), whereas BD is a process of decreasing similarity over space and time. Here, we conducted a systematic review of BH and BD in plant communities in tropical and subtropical forests to identify trends and knowledge gaps. Our bibliometric search in the Web of Science returned 1989 papers, of which 151 matched our criteria and were included in the analysis. The Neotropical region had the largest number of articles, and Brazil was the most represented country with 92 studies. Regarding the type of change, homogenization was more frequent than differentiation (noted in 69.6% of publications). The taxonomic diversity component was measured more often than functional and phylogenetic diversity components. Most studies (75.6%) assessed homogenization and differentiation based on a single observation in time; as opposed to few studies that monitored plant community over multiple years. Forest fragmentation was cited as the main determinant of homogenization and differentiation processes (57.2% of articles). Our results highlight the importance of evaluating community composition over time and more than taxonomic components (i.e., functional and phylogenetic) to advance understanding of homogenization and differentiation. Both processes were scale dependent and not mutually exclusive. As such, future research should consider differentiation as a potential transition phase to homogenization and that potential differences in both processes may depend on the spatial and temporal scale adopted. Understanding the complexity and causes of homogenization and differentiation is essential for biodiversity conservation in a world increasingly affected by anthropogenic disturbances.  相似文献   
895.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   
896.
Epiphytes, air plants that are structurally dependent on trees, are a keystone group in tropical forests; they support the food and habitat needs of animals and influence water and nutrient cycles. They reach peak diversity in humid montane forests. Climate predictions for Central American mountains include increased temperatures, altered precipitation seasonality, and increased cloud base heights, all of which may challenge epiphytes. Although remaining montane forests are highly fragmented, many tropical agricultural systems include trees that host epiphytes, allowing epiphyte communities to persist even in landscapes with lower forest connectivity. I used structural equations models to test the relative effects of climate, land use, tree characteristics, and biotic interactions on vascular epiphyte diversity with data from 31 shade coffee farms and 2 protected forests in northern Nicaragua. I also tested substrate preferences of common species with randomization tests. Tree size, tree diversity, and climate all affected epiphyte richness, but the effect of climate was almost entirely mediated by bryophyte cover. Bryophytes showed strong sensitivity to mean annual temperature and insolation. Many ferns and some orchids were positively associated with bryophyte mats, whereas bromeliads tended to establish among lichen or on bare bark. The tight relationships between bryophytes and climate and between bryophytes and vascular epiphytes indicated that relatively small climate changes could result in rapid, cascading losses of montane epiphyte communities. Currently, shade coffee farms can support high bryophyte cover and diverse vascular epiphyte assemblages when larger, older trees are present. Agroforests serve as valuable reservoirs for epiphyte biodiversity and may be important early-warning systems as the climate changes.  相似文献   
897.
For sea turtles, like many oviparous species, increasing temperatures during development threaten to increase embryonic mortality, alter offspring quality, and potentially create suboptimal primary sex ratios. Various methods are being implemented to mitigate the effects of climate change on reproductive success, but these methods, such as breeding programs, translocations, and shading, are often invasive and expensive. Irrigation is an alternative strategy for cooling nests that, depending on location, can be implemented relatively quickly and cheaply. However, multiple factors, including ambient conditions, nest substrate, and species characteristics, can influence irrigation success. Additionally, irrigation can vary in duration, frequency, and the volume of water applied to nests, which influences the cooling achieved and embryonic survival. Thus, it is critical to understand how to maximize cooling and manage risks before implementing irrigation as a nest-cooling strategy. We reviewed the literature on nest irrigation to examine whether artificial irrigation is feasible as a population management tool. Key factors that affected cooling were the volume of water applied and the frequency of applications. Embryonic responses varied with species, ambient conditions, and the timing of irrigation during development. Nest inundation was the key risk to a successful irrigation regime. Future irrigation regimes must identify clear targets, either primary or adult sex ratios, that maximize population viability. Monitoring population responses and adjusting the irrigation regime in response to population characteristics will be critical. Most studies reported on the manipulation of only one or two variables, further research is required to understand how altering multiple factors in an irrigation regime influences the cooling achieved and embryonic responses.  相似文献   
898.
Tropical forests are experiencing enormous threats from deforestation and habitat degradation. Much knowledge of the impacts of these land-use changes on tropical species comes from studies examining patterns of richness and abundance. Demographic vital rates (survival, reproduction, and movement) can also be affected by land-use change in a way that increases species vulnerability to extirpation, but in many cases these impacts may not be manifested in short-term changes in abundance or species richness. We conducted a literature review to assess current knowledge and research effort concerning how land-use change affects species vital rates in tropical forest vertebrates. We found a general paucity of empirical research on demography across taxa and regions, with some biases toward mammals and birds and land-use transitions, including fragmentation and agriculture. There is also considerable between-species variation in demographic responses to land-use change, which could reflect trait-based differences in species sensitivity, complex context dependencies (e.g., between-region variation), or inconsistency in methods used in studies. Efforts to improve understanding of anthropogenic impacts on species demography are underway, but there is a need for increased research effort to fill knowledge gaps in understudied tropical regions and taxa. The lack of information on demographic impacts of anthropogenic disturbance makes it difficult to draw definite conclusions about the magnitude of threats to tropical ecosystems under anthropogenic pressures. Thus, determining conservation priorities and improving conservation effectiveness remains a challenge.  相似文献   
899.
Some species may have a larger role than others in the transfer of complex effects of multiple human stressors, such as changes in biomass, through marine food webs. We devised a novel approach to identify such species. We constructed annual interaction-effect networks (IENs) of the simulated changes in biomass between species of the southeastern Australian marine system. Each annual IEN was composed of the species linked by either an additive (sum of the individual stressor response), synergistic (lower biomass compared with additive effects), or antagonistic (greater biomass compared with additive effects) response to the interaction effect of ocean warming, ocean acidification, and fisheries. Structurally, over the simulation period, the number of species and links in the synergistic IENs increased and the network structure became more stable. The stability of the antagonistic IENs decreased and became more vulnerable to the loss of species. In contrast, there was no change in the structural attributes of species linked by an additive response. Using indices common in food-web and network theory, we identified the species in each IEN for which a change in biomass from stressor effects would disproportionately affect the biomass of other species via direct and indirect local, intermediate, and global predator–prey feeding interactions. Knowing the species that transfer the most synergistic or antagonistic responses in a food-web may inform conservation under increasing multiple-stressor impacts.  相似文献   
900.
By using a scale framework, we examine how cross-scale interactions influence the implementation of climate adaptation and mitigation actions in different urban sectors. Based on stakeholder interviews and content analysis of strategies and projects relevant to climate adaptation and mitigation in the cities of Copenhagen and Helsinki, we present empirical examples of synergies, conflicts and trade-offs between adaptation and mitigation that are driven by the cross-scale interactions. These examples show that jurisdictional and institutional scales shape the implementation of adaptation and mitigation strategies, projects and tasks at the management scale, creating benefits of integrated solutions, but also challenges. Investigating the linkages between adaptation and mitigation through a scale framework provides new knowledge for urban climate change planning and decision-making. The results increase the understanding of why adaptation and mitigation are sometimes handled as two separate policy areas and also why attempts to integrate the two policies may fail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号