首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1035篇
  免费   40篇
  国内免费   21篇
安全科学   33篇
废物处理   4篇
环保管理   187篇
综合类   249篇
基础理论   178篇
环境理论   41篇
污染及防治   127篇
评价与监测   20篇
社会与环境   121篇
灾害及防治   136篇
  2023年   10篇
  2022年   36篇
  2021年   35篇
  2020年   12篇
  2019年   66篇
  2018年   47篇
  2017年   88篇
  2016年   101篇
  2015年   52篇
  2014年   42篇
  2013年   82篇
  2012年   44篇
  2011年   92篇
  2010年   43篇
  2009年   73篇
  2008年   62篇
  2007年   63篇
  2006年   23篇
  2005年   23篇
  2004年   11篇
  2003年   9篇
  2002年   10篇
  2001年   7篇
  2000年   12篇
  1999年   6篇
  1998年   10篇
  1997年   7篇
  1996年   7篇
  1995年   7篇
  1994年   4篇
  1993年   4篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1968年   1篇
排序方式: 共有1096条查询结果,搜索用时 656 毫秒
151.
Climate change is a global phenomenon that it is experienced and understood in places. This research examined the ways in which community members understand, perceive, and experience climate change in the context of Thunder Bay Ontario; a mid-size and remote city located in Northern Ontario, using semi-structured walking interviews (N?=?18). Themes that emerged from the interview data are presented and discussed in relation to the literature. Results emphasise that participants conceptualise climate change as a complex ethical issue that is caused by greenhouse gas emissions and a range of underlying social, economic, and political factors. Participants identified numerous changes in weather, seasonality, and extreme events and anticipate future impacts on local and regional food, water, and forests primarily. Emotional impacts of climate change, ranging from worry to feeling hopeful, emerged as an important theme. The data illustrate that the observed, experienced, and anticipated impacts of climate change are shaped by experiences on the land and water within the community of Thunder Bay and the region of Northern Ontario. Finally, the interview data illustrate that participants believe that transformative action, by a range of actors, is called for to address the problem of climate change. This study highlights the importance of place-based and context-specific climate change research and the utility of walking interviews.  相似文献   
152.
Wetland protection and restoration strategies that are designed to promote hydrologic resilience do not incorporate the location of wetlands relative to the main stream network. This is primarily attributed to the lack of knowledge on the effects of wetland location on wetland hydrologic function (e.g., flood and drought mitigation). Here, we combined a watershed‐scale, surface–subsurface, fully distributed, physically based hydrologic model with historical, existing, and lost (drained) wetland maps in the Nose Creek watershed in the Prairie Pothole Region of North America to (1) estimate the hydrologic functions of lost wetlands and (2) estimate the hydrologic functions of wetlands located at different distances from the main stream network. Modeling results showed wetland loss altered streamflow, decreasing baseflow and increasing stream peakflow during the period of the precipitation events that led to major flooding in the watershed and downstream cities. In addition, we found that wetlands closer to the main stream network played a disproportionately important role in attenuating peakflow, while wetland location was not important for regulating baseflow. The findings of this study provide information for watershed managers that can help to prioritize wetland restoration efforts for flood or drought risk mitigation.  相似文献   
153.
ABSTRACT: As part of the National Assessment of Climate Change, the implications of future climate predictions derived from four global climate models (GCMs) were used to evaluate possible future changes to Pacific Northwest climate, the surface water response of the Columbia River basin, and the ability of the Columbia River reservoir system to meet regional water resources objectives. Two representative GCM simulations from the Hadley Centre (HC) and Max Planck Institute (MPI) were selected from a group of GCM simulations made available via the National Assessment for climate change. From these simulations, quasi-stationary, decadal mean temperature and precipitation changes were used to perturb historical records of precipitation and temperature data to create inferred conditions for 2025, 2045, and 2095. These perturbed records, which represent future climate in the experiments, were used to drive a macro-scale hydrology model of the Columbia River at 1/8 degree resolution. The altered streamflows simulated for each scenario were, in turn, used to drive a reservoir model, from which the ability of the system to meet water resources objectives was determined relative to a simulated hydrologic base case (current climate). Although the two GCM simulations showed somewhat different seasonal patterns for temperature change, in general the simulations show reasonably consistent basin average increases in temperature of about 1.8–2.1°C for 2025, and about 2.3–2.9°C for 2045. The HC simulations predict an annual average temperature increase of about 4.5°C for 2095. Changes in basin averaged winter precipitation range from -1 percent to + 20 percent for the HC and MPI scenarios, and summer precipitation is also variously affected. These changes in climate result in significant increases in winter runoff volumes due to increased winter precipitation and warmer winter temperatures, with resulting reductions in snowpack. Average March 1 basin average snow water equivalents are 75 to 85 percent of the base case for 2025, and 55 to 65 percent of the base case by 2045. By 2045 the reduced snowpack and earlier snow melt, coupled with higher evapotranspiration in early summer, would lead to earlier spring peak flows and reduced runoff volumes from April-September ranging from about 75 percent to 90 percent of the base case. Annual runoff volumes range from 85 percent to 110 percent of the base case in the simulations for 2045. These changes in streamflow create increased competition for water during the spring, summer, and early fall between non-firm energy production, irrigation, instream flow, and recreation. Flood control effectiveness is moderately reduced for most of the scenarios examined, and desirable navigation conditions on the Snake are generally enhanced or unchanged. Current levels of winter-dominated firm energy production are only significantly impacted for the MPI 2045 simulations.  相似文献   
154.
James E. Lovelock, famed for his Gaia hypothesis, which views the Earth as a living integrated and interconnected self-regulating system whose equilibrium comes about from complex energy-based interactions and feedback loops, ultimately sustaining life, passed away at the end of July, 2022 at the age of 103. Not only are the adaptive mechanisms of Gaia central to the conversation of environmental homeostasis, they lie at the heart of climate change and global warming. Lovelock is also remembered as the co-inventor of the electron capture detector that eventually allowed for the sensitive detection of chlorofluorocarbons and pesticides. Finally, Lovelock’s free-spirited nature and research independence allow academia to rethink current research’s modus operandi.  相似文献   
155.
The Sendai Framework for Disaster Risk Reduction 2015–2030 and the United Nations’ Sustainable Development Goals call for action to build back better in ways that leave no one behind. At the same time, ensuring a local voice is increasingly central to humanitarian engagement. These aims contrast with limited analysis of how local actors might be supported in these respects during response and recovery, and how far recommendations are specific or generalisable across richer and poorer national contexts. The paper begins by comparing lessons learnt by survivors and community organisations in Sint Maarten, Dutch Caribbean, following a high‐income state‐led response to Hurricane Irma in 2017 with the priorities of lower income, humanitarian‐led endeavours. The differences reveal the importance of economic resources as the basis for individual self‐reliance and a fragmented civil society with limited leadership ambitions in Sint Maarten. Strong cross‐cultural alignment nevertheless allows for a globally‐relevant and yet contextually‐sensitive framework for survivor‐led action and reconstruction.  相似文献   
156.
Peatland is an efficient carbon dioxide (CO2) sink on the continent and plays an important role in global carbon cycle. Climate change and human activities, two of the notable global environmental issues, have accelerated the degradation of peatlands during recent years. Global warming will increase the rate of aerobic decomposition in the surface of peatlands. Carbon stored in the subsurface of peatlands will be metabolized if the climatic conditions become favorable for decomposition. This study reviewed the carbon circle of subsurface peatland in natural environment and in environments disturbed by human activity or climate change. Furthermore, the major factors (environmental and human factors) that affect the carbon cycle were also discussed. According to a previous study, subsurface peatland will rapidly participate in the carbon cycle when the peatland is degraded. Water level, vegetation, and temperature were the main natural factors affecting the carbon cycle, whereas drainage, farming, and grazing were the main anthropogenic factors. Further studies should focus on different soil layer carbon dynamics, inorganic carbon content, and conservation and restoration of peatlands. The study methods should be a combination of macro with micro scale and focus on developing deep peat research techniques. Most of the previous studies focused on greenhouse gas emission and their response factors in short-term experiments. Thus, the mechanism and process of subsurface carbon are not clear and needs further study. © 2018 Science Press. All rights reserved.  相似文献   
157.
The Disaster Deficit Index (DDI) measures macroeconomic and financial risk in a country according to possible catastrophic scenario events. Extreme disasters can generate financial deficit due to sudden and elevated need of resources to restore affected inventories. The DDI captures the relationship between the economic loss that a country could experience when a catastrophic event occurs and the availability of funds to address the situation. The proposed model utilises the procedures of the insurance industry in establishing probable losses, based on critical impacts during a given period of exposure; for economic resilience, the model allows one to calculate the country's financial ability to cope with a critical impact. There are limitations and costs associated with access to resources that one must consider as feasible values according to the country's macroeconomic and financial conditions. This paper presents the DDI model and the results of its application to 19 countries of the Americas and aims to guide governmental decision‐making in disaster risk reduction.  相似文献   
158.
应对气候变化法的立法探究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了实现碳排放达峰目标和碳中和愿景,明确应对气候变化的法律地位、工作目标和法律要求,规定部门职责及温室气体排放权的法律属性与交易机制,分解工作目标并开展评价考核,彰显国家应对气候的法治决心,亟须制定综合性基础法律——应对气候变化法。该法的制定已具备充足的研究起草基础和下位法支撑,建议尽快纳入全国人大常委会立法计划,并启动《环境保护法》等相关法律的修改。本文建议,将低碳发展和碳排放达峰、碳中和等纳入立法目的,设立总则、规划与标准、气候变化减缓、气候变化适应、管理和监督、国际合作、法律责任、附则八章,合理设立规范重点。健全统一监管与部门分工负责的体制和基金筹集、市场交易、社会共治等机制,全面构建国内应对气候变化管理制度体系,部署国际协商与合作措施,设置地方政府工作目标责任,对违法行为规定罚则。  相似文献   
159.
Using a standard Hotelling model of resource exploitation, we determine the optimal energy consumption paths from three options: dirty coal, which is non-renewable and carbon-emitting; clean coal, which is also non-renewable but carbon-free thanks to carbon capture and storage (CCS); and solar energy, which is renewable and carbon-free. We assume that the atmospheric carbon stock cannot exceed an exogenously given ceiling. Taking into account learning-by-doing in CCS technology, we show the following results: (i) clean coal exploitation cannot begin before the outset of the carbon constrained phase and must stop strictly before the end of this phase; (ii) the energy price path can evolve non-monotonically over time; and (iii) when the solar cost is low enough, an unusual energy consumption sequence along with solar energy is interrupted for some time and replacement by clean coal may exist.  相似文献   
160.
Daniel Abrahams 《Disasters》2014,38(Z1):S25-S49
Disaster recovery operations that do not account for environmental sustainability (ES) risk exacerbating the impact of the disaster and hindering long‐term recovery efforts. Yet aid agencies do not always consider ES. This research is a case study of the recovery that followed the 2010 earthquake in Haiti. Using timber and concrete procurement as proxies for broader post‐disaster operations, research examined perceptions of ES as well as attempts at and barriers to incorporating it into programming. Identified barriers can be grouped into two categories: (1) prioritisations and perceptions within the disaster response sector that resulted in limited enthusiasm for incorporating ES into programming, and (2) structural and organisational barriers within the disaster response framework that impeded ES attempts and served as a further disincentive to incorporating ES into programming. As a result of those barriers, incorporation of ES was sporadic and inconsistent and often depended on the capacity and motivation of specific implementers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号