Addition of H2O2 has been employed to repress bromate formation during ozonation of bromide-containing source water. However, the addition of H2O2 will change the oxidation pathways of organic compounds due to the generation of abundant hydroxyl radicals, which could affect the removal efficacy of trihalomethane precursors via the combination of ozone and biological activated carbon (O3-BAC). In this study, we evaluated the effects of H2O2 addition on bromate formation and trihalomethane formation potential (THMFP) reduction during treatment of bromide-containing (97.6-129.1 μg/L) source water by the O3-BAC process. At an ozone dose of 4.2 mg/L, an H2O2/O3 (g/g) ratio of over 1.0 was required to maintain the bromate concentration below 10.0 μg/L, while a much lower H2O2/O3 ratio was sufficient for a lower ozone dose. An H2O2/O3 (g/g) ratio below 0.3 should be avoided since the bromate concentration will increase with increasing H2O2 dose below this ratio. However, the addition of H2O2 at an ozone dose of 3.2 mg/L and an H2O2/O3 ratio of 1.0 resulted in a 43% decrease in THMFP removal when compared with the O3-BAC process. The optimum H2O2/O3 (g/g) ratio for balancing bromate and trihalomethane control was about 0.7-1.0. Fractionation of organic materials showed that the addition of H2O2 decreased the removal efficacy of the hydrophilic matter fraction of DOC by ozonation and increased the reactivity of the hydrophobic fractions during formation of trihalomethane, which may be the two main reasons responsible for the decrease in THMFP reduction efficacy. Overall, this study clearly demonstrated that it is necessary to balance bromate reduction and THMFP control when adopting an H2O2 addition strategy. 相似文献
A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons(HC) and nitrogen oxides(NOx) at different speeds, chemical species profiles and ozone formation potential(OFP) of volatile organic compounds(VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOxhad been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOxemissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%–45.2%, followed by aromatics and alkenes. The most abundant species were propene,ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity(MIR)method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%–91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene. 相似文献