首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   4篇
  国内免费   82篇
安全科学   7篇
废物处理   7篇
环保管理   79篇
综合类   288篇
基础理论   65篇
污染及防治   124篇
评价与监测   28篇
社会与环境   4篇
  2024年   1篇
  2023年   13篇
  2022年   11篇
  2021年   17篇
  2020年   16篇
  2019年   11篇
  2018年   12篇
  2017年   15篇
  2016年   18篇
  2015年   25篇
  2014年   27篇
  2013年   31篇
  2012年   22篇
  2011年   58篇
  2010年   27篇
  2009年   35篇
  2008年   39篇
  2007年   33篇
  2006年   33篇
  2005年   15篇
  2004年   13篇
  2003年   23篇
  2002年   21篇
  2001年   15篇
  2000年   8篇
  1999年   12篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
  1974年   1篇
排序方式: 共有602条查询结果,搜索用时 31 毫秒
151.
Yearly, about 22 × 1012 g phosphorus (P) from mined fossil phosphate resources are added to the world economy. The size of remaining fossil phosphate resources is uncertain but practically finite. Thus, fossil P resources may become depleted by ongoing mining. Despite calls for resource conservation, fossil P resources have been depleted at an increasing rate. Geographically, fossil P supply and demand are distributed in an increasingly uneven way, which has geopolitical consequences and may well affect security of supply. Current use of P gives rise to negative environmental impacts due to P losses from the economy and contaminants derived from fossil P resources. There may also be negative impacts on human health. Reducing the demand for fossil phosphorus may reduce environmental burdens and may improve the future security of supply. Technically speaking, there is much scope for the reduction of current demand for fossil P resources. Limiting consumption of P to essential uses, increased efficiency of agricultural use and increased recycling of P may substantially contribute to the reduction of demand for fossil P resources. Recycling of P has to face concerns regarding the efficiency of P recovery, pathogenic organisms and contaminating substances. Much work remains to be done to effectively address those concerns.  相似文献   
152.
采用"SH-A节能型强化生物脱氮除碳工艺"进行煤焦油加工废水处理的研究,讨论了各个处理环节的运行情况和处理效果。经该工艺对煤焦油加工废水进行处理后,COD、NH-N和矿物油的去除率均可达到98%,色Cr 3度和酚的去除率均可达到99%,氰的去除率可达到95%,各项指标均可达到国家《污水综合排放标准》(GB8978-1996)一级。  相似文献   
153.
使用固相萃取-超高效液相色谱串联质谱法,测定广西3个污水处理厂(P1、P2、P3)中17种全氟和多氟烷基物质(PFASs)。结果显示,共检测出10种PFASs,检出率为33.3%~100%。进、出水中PFASs质量浓度分别为32.0~86.4和23.0~39.6 ng/L。全氟丁烷磺酸(PFBA)、全氟戊酸(PFPeA)和全氟辛酸(PFOA)是进、出水中的主要污染物。厌氧-缺氧-好氧(AAO)工艺对PFASs的去除率为49.0%;改良型序批反应器(MSBR)工艺对PFASs的去除率为72.2%,氧化沟工艺对PFASs的去除率为25.0%。P1和P3进水中的PFASs主要来源于生活污水,P2进水中的PFASs来源包括生活污水和工业废水。P1出水中的全氟十二烷酸(PFDoDA)对纳污河流的鱼类和水蚤构成高生态风险,对藻类构成中等生态风险,P2和P3出水对纳污河流构成的生态风险较低。  相似文献   
154.
In order to better understand the contribution of nutrients regeneration pathway, release potential and transformation pattern to cyanobacterial growth and succession, 7 sampling sites in Lake Chaohu with different bloom degree were studied every two months from February to November 2018. The carbon, nitrogen (N) and phosphorus (P) forms or fractions in surface, interstitial water and sediments as well as extracellular enzymatic activities, P sorption, specific microbial abundance and community composition in sediments were analyzed. P regeneration pathway was dominated by iron-bound P desorption and phosphorus-solubilizing bacteria solubilization in severe-bloom and slight-bloom area respectively, which both resulted in high soluble reactive phosphorus (SRP) accumulation in interstitial water. However, in severe-bloom area, higher P release potential caused the strong P release and algal growth, compared to slight-bloom area. In spring, P limitation and N selective assimilation of Dolichospermum facilitated nitrate accumulation in surface water, which provided enough N source for the initiation of Microcystis bloom. In summer, the accumulated organic N in Dolichospermum cells during its bloom was re-mineralized as ammonium to replenish N source for the sustainable development of Microcystis bloom. Furthermore, SRP continuous release led to the replacement of Dolichospermum by Microcystis with the advantage of P quick utilization, transport and storage. Taken together, the succession from Dolichospermum to Microcystis was due to both the different forms of N and P in water column mediated by different regeneration and transformation pathways as well as release potential, and algal N and P utilization strategies.  相似文献   
155.
Macrophytes are usually chosen for phytoremediation tools to remove P in eutrophic aquatic ecosystems, but the lack of test methods hinders the understanding of removal mechanism and application. In this study, we used the novel technologies combined of Diffusive gradients in thin films (DGT), Planar optode (PO), and Non-invasive micro-test technology (NMT) to explore P dynamics in water-sediment continuum and rhizosphere of Potamogeton crispus over time. Results of the high-resolution in situ measurement showed that labile P(LPDGT) fluxes at the surficial sediment significantly decreased from approximate 120, 140, and 200 pg/ (cm2?sec) via 30 days incubation period to 17, 40, and 56 pg/(cm2?sec) via that of 15 days. Obvious synchronous increase of LPDGT was not detected in overlying water, suggesting the intense assimilation of dissolve reactive P via root over time. PO measurement indicated that O2 concentration around the rhizosphere remarkably increased and radially diffused into deeper sediment until 100% saturation along with the root stretch downwards. NMT detection of roots showed the obvious O2 inflow into root tissue with the uppermost flux of 30 pmol/(cm2?sec) from surroundings via aerenchyma on different treatment conditions. Different from previous reports, gradually saturating O2 concentrations around the rhizosphere was principally driven by O2 penetration through interspace attributing to root stretch downward rather than root O2 leakage. Increased O2 concentrations in deep sediment over time finally induced the oxidization of labile Fe(II) into Fe(III) bound P and local P immobilization.  相似文献   
156.
Phosphorus (P) is a finite and non-substitutable resource that is essential to sustaining high levels of agricultural productivity but is also responsible for environmental problems, e.g., eutrophication. Based on the methodology of Material Flow Analysis, this study attempts to quantify all relevant flows and stocks of phosphorus (P) in Austria, with a special focus on waste and wastewater management. The system is modeled with the software STAN, which considers data uncertainty and applies data reconciliation and error propagation. The main novelty of this work lies in the high level of detail at which flows and stocks have been quantified to achieve a deeper understanding of the system and to provide a sound basis for the evaluation of various management options. The budget confirms on the one hand the dependence of mineral P fertilizer application (2 kg cap−1 yr−1), but it highlights on the other hand considerable unexploited potential for improvement. For example, municipal sewage sludge (0.75 kg cap−1 yr−1) and meat and bone meal (0.65 kg cap−1 yr−1) could potentially substitute 70% of the total applied mineral P fertilizers. However, recycling rates are low for several P flows (e.g., 27% of municipal sewage sludge; 3% of meat and bone meal). Therefore, Austria is building up a remarkable P stock (2.1 kg P cap−1 yr−1), mainly due to accumulation in landfills (1.1 kg P cap−1 yr−1) and agricultural soils (0.48 kg P cap−1 yr−1).  相似文献   
157.
This study reports the feasibility of using municipal wastewater biosolids as an alternative carbon source for biological phosphorus removal. The biosolids were treated by a lowtemperature, thermal alkaline hydrolysis process patented by Lystek International Inc.(Cambridge, ON, Canada) to produce short-chain volatile fatty acids and other readily biodegradable organics. Two sequencing batch reactors(SBRs) were operated with synthetic volatile fatty acids(Syn VFA) and readily biodegradable organics produced from the alkaline hydrolysis of municipal wastewater biosolids(Lystek) as the carbon source, respectively.Municipal wastewaters with different strengths and COD:N:P ratios were tested in the study. The reactors' performances were compared with respect to nitrogen and phosphorus removal. It was observed that phosphorus removal efficiencies were between 98%–99% and 90%–97% and nitrogen removal efficiencies were 78%–81%, and 67% for the Syn VFA and Lystek, respectively. However, the kinetics for phosphorus release and uptake during the anaerobic and aerobic stages with Lystek were observed to be significantly lower than Syn VFA due to the presence of higher order VFAs(C4 and above) and other fermentable organics in the Lystek.  相似文献   
158.
A novel struvite crystallization method induced by bioelectrochemical acidolysis of magnesia(MgO) was investigated to recover phosphorus(P) from aqueous solution using a dual-chamber microbial electrolysis cell(DMEC). Magnesium ion(Mg~(2+)) in the anolyte was firstly confirmed to automatically migrate from the anode chamber to the cathode chamber, and then react with ammonium(NH+4) and phosphate(PO_4~(3-)) in the catholyte to form struvite. Recovery efficiency of 17.8%–60.2% was obtained with the various N/P ratios in the catholyte. When MgO(low solubility under alkali conditions) was added into the anolyte, the bioelectrochemical acidolysis of MgO naturally took place and the released Mg~(2+)induced struvite crystallization in the cathode chamber for P recovery likewise.Besides, there was a strong linear positive correlation between the recovery efficiency and the MgO dosage(R~2= 0.935), applied voltage(R~2= 0.969) and N/P ratio(R~2= 0.905). Increasing the applied voltage was found to enhance the P recovery via promoting the MgO acidolysis and the released Mg~(2+)migration, while increasing the N/P ratio in the catholyte enhanced the P recovery via promoting the struvite crystallization. Moreover, the electrochemical performance of the system was promoted due to more stable anolyte pH and lower pH gradient between the two chambers. Current density was promoted by 10%, while the COD removal efficiency was improved from 78.2% to 91.8% in the anode chamber.  相似文献   
159.
The phosphorus(P) fraction distribution and formation mechanism in the supernatant after P adsorption onto iron oxides and iron oxide-humic acid(HA) complexes were analyzed using the ultrafiltration method in this study.With an initial P concentration of 20 mg/L(I =0.01 mol/L and pH = 7),it was shown that the colloid(1 kDa-0.45 μm) component of P accounted for 10.6%,11.6%,6.5%,and 4.0%of remaining total P concentration in the supernatant after P adsorption onto ferrihydrite(FH),goethite(GE),ferrihydrite-humic acid complex(FH-HA),goethite-humic acid complex(GE-HA),respectively.The 1 kDa component of P was still the predominant fraction in the supernatant,and underestimated colloidal P accounted for 2.2%,55.1%,45.5%,and 38.7%of P adsorption onto the solid surface of FH,FH-HA,GE and GE-HA,respectively.Thus,the colloid P could not be neglected.Notably,it could be interpreted that Fe~(3+) hydrolysis from the adsorbents followed by the formation of colloidal hydrous ferric oxide aggregates was the main mechanism for the formation of the colloid P in the supernatant.And colloidal adsorbent particles co-existing in the supernatant were another important reason for it.Additionally,dissolve organic matter dissolved from iron oxide-HA complexes could occupy large adsorption sites of colloidal iron causing less colloid P in the supernatant.Ultimately,we believe that the findings can provide a new way to deeply interpret the geochemical cycling of P,even when considering other contaminants such as organic pollutants,heavy metal ions,and arsenate at the sediment/soil-water interface in the real environment.  相似文献   
160.
A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite(IS) clay,sodium silicate and magnesium sulfate as the starting materials.In this process,IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52 m~2/g(about 8.7 folds higher than that of IS clay) and very negative Zeta potential(- 34.5 mV).The inert Si- O- Si(Mg,Al) bonds in crystal framework of IS were broken to form Si(Al)- O~- groups with good adsorption activity,which greatly increased the adsorption sites served for holding much CTC molecules.Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81 mg/g of CTC(only 159.7 mg/g for raw IS clay) and remove 99.3%(only 46.5%for raw IS clay) of CTC from 100 mg/L initial solution(pH 3.51;adsorption temperature 30℃;adsorbent dosage,3 g/L).The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model,Temkin equation and pseudo second-order kinetic model.The mesopore adsorption,electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties.As a whole,the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号