首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   4篇
  国内免费   82篇
安全科学   7篇
废物处理   7篇
环保管理   79篇
综合类   288篇
基础理论   65篇
污染及防治   124篇
评价与监测   28篇
社会与环境   4篇
  2024年   1篇
  2023年   13篇
  2022年   11篇
  2021年   17篇
  2020年   16篇
  2019年   11篇
  2018年   12篇
  2017年   15篇
  2016年   18篇
  2015年   25篇
  2014年   27篇
  2013年   31篇
  2012年   22篇
  2011年   58篇
  2010年   27篇
  2009年   35篇
  2008年   39篇
  2007年   33篇
  2006年   33篇
  2005年   15篇
  2004年   13篇
  2003年   23篇
  2002年   21篇
  2001年   15篇
  2000年   8篇
  1999年   12篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
  1974年   1篇
排序方式: 共有602条查询结果,搜索用时 31 毫秒
211.
The removal of PAHs during the wastewater treatment process was examined in an activated sludge mode conventional facility. Concentrations reported are taken from an earlier measuring campaign. Removals of PAHs ranged between 28 and 67% in the primary, <1-61% in the secondary stage, and 37-89% in the whole process. Significant positive relationships were observed for removal efficiencies and the log K(ow) of PAHs in the primary and the log K(H) of PAHs in the secondary stage. Experimental removals were compared to those obtained from the FATE model. In the primary stage, predicted removals were lower than those experimentally calculated while in the secondary stage were higher. Predicted removals were apportioned mainly to sorption with negligible contribution from volatilization and biodegradation. Remarkable consistency between experimental and modeled removal efficiencies (-20-+20%) was observed for almost all PAHs in the whole treatment process.  相似文献   
212.
Technological options for the management of biosolids   总被引:1,自引:0,他引:1  
BACKGROUND, AIM, AND SCOPE: Large quantities of biosolids (sewage sludge), which are produced from municipal wastewater treatment, are ever-increasing because of the commissioning of new treatment plants and continuous upgrades of the existing facilities. A large proportion of biosolids are currently landfilled. With increasing pressure from regulators and the general public, landfilling of biosolids is being phased out in many countries because of potential secondary pollution caused by leachate and the emission of methane, a potent greenhouse gas. Biosolids contain nutrients and energy that can be used beneficially. Significant efforts have been made recently to develop new technologies to manage biosolids and make useful products from them. In this paper, we provide a review of the technologies in biosolids management. MATERIALS AND METHODS: A survey of literature was conducted. RESULTS: At present, the most common beneficial use of biosolids is agricultural land application because of inherent fertilizer values found in biosolids. Expansion of land application, however, may be limited in the future because of more stringent regulatory requirements and public concern about food chain contamination in some countries. Perceived as a green energy source, the combustion of biosolids has received renewed interest. Anaerobic digestion is generally a more effective method than incineration for energy recovery, and digested biosolids are suitable for further beneficial use through land application. Although conventional incineration systems for biosolid management generally consume more energy than they produce because of the high moisture content in the biosolids, it is expected that more combustion systems, either monocombustion or cocombustion, will be built to cope with the increasing quantity of biosolids. DISCUSSION: Under the increasingly popular low-carbon economy policy, biosolids may be recognized as a renewable fuel and be eligible for 'carbon credits'. Because ash can be used to manufacture construction materials, combustion can provide a complete management for biosolids. A number of advanced thermal conversion technologies (e.g., supercritical water oxidation process and pyrolysis) are under development for biosolids management with a goal to generate useful products, such as higher quality fuels and recovery of phosphorus. With an ever-increasing demand for renewable energy, growing bioenergy crops and forests using biosolids as a fertilizer and soil amendment can not only contribute to the low-carbon economy but also maximize the nutrient and carbon value of the biosolids. CONCLUSIONS: Land application of biosolids achieves a complete reuse of its nutrients and organic carbon at a relatively low cost. Therefore, land application should become a preferred management option where there is available land, the quality of biosolids meet regulatory requirements, and it is socially acceptable. Intensive energy cropping and forest production using biosolids can help us meet the ever-increasing demand for renewable energy, which can eliminate the contamination potential for food sources, a common social concern about land application of biosolids. In recent years, increasing numbers of national and local governments have adopted more stringent regulations toward biosolid management. Under such a political climate, biosolids producers will have to develop multireuse strategies for biosolids to avoid being caught because a single route management practice might be under pressure at a short notice. Conventional incineration systems for biosolids management generally consume more energy than they produce and, although by-products may be used in manufacturing, this process cannot be regarded as a beneficial use of biosolids. However, biosolids are likely to become a source of renewable energy and produce 'carbon credits' under the increasingly popular, low-carbon economy policy. RECOMMENDATIONS AND PERSPECTIVES: To manage biosolids in a sustainable manner, there is a need for further research in the following areas: achieving a higher degree of public understanding and acceptance for the beneficial use of biosolids, developing cost-efficient and effective thermal conversions for direct energy recovery from biosolids, advancing technology for phosphorus recovery, and selecting or breeding crops for efficient biofuel production.  相似文献   
213.
The potential purification of an horizontal subsurface flow constructed wetlands (HSSFCW) treating greywater in a Moroccan primary school was investigated according to the monitoring of water quality parameters over a period of 100 days through two simultaneous stages: first, an internal three dimensional grid of sampling ports; secondly, an entry and exit. The calibration of the relaxed TIS concentration model based on tank in series hydraulic assumption with experimental data gave the frequency distribution profiles of K-rate constant values for the three parameters: BOD5, COD and TN, whose maximum values are respectively 50 m/yr, 70 m/yr, and 42 m/yr. The HSSFCW system has higher K-rate coefficient for all the three parameters at the bottom layer compared with the surface layer, with increasing K-rates over length. The analysis of bacteriological and chemical results has shown that the HSSFCW could not completely remove all pollutants (especially TN and TP), but it could be used successfully to upgrade the quality of greywater to an acceptable level. However, we predict that there will be an increase in removal efficiencies with time bearing in mind that the system is newly implemented.  相似文献   
214.
Sewage sludge (SS), a by-product of wastewater treatment, consists of highly concentrated organic and inorganic pollutants, including phosphorus (P). In this study, P with different chemical fractions in SS under different drying and roasting temperatures was investigated with the use of appropriate standards, measurements, and testing protocol. The drying and roasting treatment of SS was conducted in a laboratory-scale furnace. Two types of SS samples under different treatment temperatures were analyzed by 31P NMR spectroscopy. These samples were dried by a vacuum freeze dryer at ?50 °C and a thermoelectric thermostat drying box at 105 °C. Results show that the inorganic P (IP) content increased as the organic P content decreased, and the bio-availability of P increased because IP is a form of phosphorous that can be directly absorbed by plants. 31P NMR analysis results indicate the change in P fractions at different temperatures. Non-apatite P was the dominant form of P under low-temperature drying and roasting, whereas apatite P was the major one under high-temperature drying and roasting. Results indicate that temperature affects the transformation of P.  相似文献   
215.
The phosphorus load originating from crop production and animal husbandry is a major contributor to the eutrophication of lakes, rivers and coastal waters. The P losses to surface waters may, however, differ drastically due to the diversity of agricultural production systems practised under contrasting environmental conditions. To assess the most problematic types of agriculture, we need information on the P load from different alternative farming practices. Such information cannot, however, be obtained solely from field runoff experiments, as the number of treatment combinations required to account for all relevant farming systems and environmental conditions far exceeds our research capabilities. To facilitate the comparison of P loads, we therefore need reasonably simple models. A key factor controlling the P load from agriculture is the past and present use of nutrients in fertilizers and manure in relation to a crop's uptake, i.e. the soil-surface balance of P. Here, we present a simple empirical model that relates the P surplus (or deficit) in a farm to the edge-of-field losses of algal-available P. Based on long-term fertilizer trials, the model first estimates the change in soil-test P of top soil with the aid of the soil-surface balance of P. Soil-test P is then used to approximate the concentration of dissolved reactive P in surface runoff and drainage flow, as adjusted for different P application types. The loss of particulate P is obtained from typical erosion rates. The model can be applied in life-cycle analyses and in assessing future developments. We illustrate use of the model by calculating the loss of algal-available P from conventional and organic crop and dairy farms located on clay and fine sand soils.  相似文献   
216.
综述了柴油机排放碳颗粒催化燃烧中运用的贵金属催化剂、过渡金属催化剂、(类)钙钛矿催化剂以及催化技术与低温等离子体技术协同作用的最新研究进展,介绍了上述催化剂和催化技术的作用机理,并探讨了它们在实际应用中存在的问题和应用前景。  相似文献   
217.
利用焦炭吸附进行燃煤烟气脱硫脱氮技术的研究   总被引:6,自引:0,他引:6  
介绍一种干法烟气脱硫脱氮工艺方法 ,利用一种非常容易获得炭质吸附材料经过简单的工艺处理后 ,达到燃煤烟气脱硫脱氮效果 ,整个过程不产生二次污染  相似文献   
218.
滤料可溶氨对测定水体中氨氮影响的消除   总被引:1,自引:0,他引:1  
本文介绍了常用滤料中可溶性氨含量和对水体中氨氮含量测定的影响。根据实验结果,作者提出了消除影响的一些具体措施。  相似文献   
219.
用3,5-二水杨酸法测黑液里还原糖含量。通过正交试验法,探讨了黑液质量分数、反应温度、硫酸质量分数及搅拌时间对黑液酸析前后还原糖去除率的影响,得出的最佳工艺条件是:黑液质量分数为10%.反应温度为700℃,硫酸质量分数为10%,搅拌时间35min。  相似文献   
220.
本文阐述了一种新型二级垂直移动式颗粒层除尘器,它的关键技术采用独创的床外清灰及气流输送、滤料循环系统.该除尘器1991年已获国家实用新型专利,它的适用范围广,除尘效率高,无二次污染。适用于粉尘、烟气等污染源的治理,使排放浓度达标.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号