首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   5篇
  国内免费   101篇
安全科学   22篇
废物处理   6篇
环保管理   33篇
综合类   182篇
基础理论   47篇
污染及防治   99篇
评价与监测   24篇
社会与环境   2篇
灾害及防治   2篇
  2023年   7篇
  2022年   21篇
  2021年   17篇
  2020年   20篇
  2019年   12篇
  2018年   10篇
  2017年   15篇
  2016年   13篇
  2015年   14篇
  2014年   7篇
  2013年   20篇
  2012年   18篇
  2011年   35篇
  2010年   14篇
  2009年   18篇
  2008年   26篇
  2007年   27篇
  2006年   21篇
  2005年   12篇
  2004年   10篇
  2003年   7篇
  2002年   13篇
  2001年   7篇
  2000年   6篇
  1999年   11篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有417条查询结果,搜索用时 234 毫秒
121.
Current knowledge about the transformation of total mercury and methylmercury (MeHg) in aerobic composting process is limited. In this study, the composition and transformation of mercury and dissovled organic matter (DOM) in aerobic composting process of municipal sewage sludge were were comprehensively characterized, and the differences among the three C/N ratio (20, 26 and 30) were investigated. The main form of mercury in C/N 20 and 26 was organo-chelated Hg (F3, 46%-60%); while the main form of mercury in C/N 30 was mercuric sulfide (F5, 64%-70%). The main component of DOM in C/N 20 and 26 were tyrosine-like substance (C1, 53%-76%) while the main fractions in C/N 30 were tyrosine-like substance (C1, 28%-37%) and fulvic-like substance (C2, 17%-39%). The mercury and DOM varied significantly during the 9 days composting process. Compared to C/N 20 and 26, C/N 30 produced the less MeHg after aerobic composting process, with values of 658% (C/N 20), 1400% (C/N 26) and 139% (C/N 30) of the initial, respectively. Meanwhile, C/N 30 produced the best compost showed greater degree of DOM molecular condensation and humification. Hg fraction had been altered by DOM, as indicated by a significant correlation between mercury species and DOM components. Notably, C/N 30 should be used as an appropriate C/N ratio to control the methylation processes of mercury and degration of DOM.  相似文献   
122.
The objective of this research was to quantify the temporal variation of dissolved organic matter(DOM) in five distinct waterbodies in watersheds with diverse types of land use and land cover in the presence and absence of sunlight. The water bodies were an agricultural pond, a lake in a forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared by dispensing unfiltered samples into filtered samples in 1:10 ratio(V/V). The first set was exposed to sunlight(10 hr per day for 30 days) for examining the combined effect of photo-biodegradation, while the second set was stored in dark for examining biodegradation alone. Spectroscopic measurements in tandem with multivariate statistics were used to interpret DOM lability and composition. The results suggest that the agricultural pond behaved differently compared to other study locations during degradation experiments due to the presence of higher amount of microbial humic-like and protein-like components derived from microbial/anthropogenic sources. For all samples, a larger decrease in dissolved organic carbon(DOC) concentration(10.12% ±9.81% for photo-biodegradation and 6.65% ± 2.83% for biodegradation) and rapid transformation of DOM components(i.e., terrestrial humic-like components into microbial humic and protein-like components) were observed during photo-biodegradation experiments.Results suggest that sunlight facilitated DOM biodegradation, resulting in simpler recalcitrant molecules regardless of original composition. Overall, it was found that combined effects of light and bacteria are more efficient than bacterial effects alone in remineralizing and altering DOM, which highlights the crucial importance of sunlight in transforming aquatic DOM.  相似文献   
123.
Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in terms of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight (MW) fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (P < 0.05) and the protein-like FDOM (P < 0.05) displayed a significant seasonal variation, with higher removal efficiencies in summer, whereas removal of CDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality.  相似文献   
124.
In wastewater treatment plants(WWTPs)using the activated sludge process,two methods are widely used to improve aeration efficiency — use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics(such as concentrations of mixed liquor suspended solids(MLSS)and microbial communities)and operating conditions(such as air flow rate and operational dissolved oxygen(DO)concentrations). Moreover,operational DO is closely linked to effluent quality. This study,which is in reference to WWTP discharge class A Chinese standard effluent criteria,determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3 mg/L,and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions,as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model(determined using different air flow rate(Q′_(air))and mixed liquor volatile suspended solids(MLVSS)values),theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however,operating at low DO and low MLVSS could significantly reduce energy consumption. Finally,a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed,which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology.  相似文献   
125.
In order to understand the transport and humification processes of dissolved organic matter(DOM) within sediments of a semi-arid floodplain at Rifle,Colorado,fluorescence excitation–emission matrix(EEM) spectroscopy,humification index(HIX) and specific UV absorbance(SUVA) at 254 nm were applied for characterizing depth and seasonal variations of DOM composition.Results revealed that late spring snowmelt leached relatively fresh DOM from plant residue and soil organic matter down into the deeper vadose zone(VZ).More humified DOM is preferentially adsorbed by upper VZ sediments,while non-or lesshumified DOM was transported into the deeper VZ.Interestingly,DOM at all depths undergoes rapid biological humification process evidenced by the products of microbial by-product-like(i.e.,tyrosine-like and tryptophan-like) matter in late spring and early summer,particularly in the deeper VZ,resulting in more humified DOM(e.g.,fulvic-acid-like and humic-acid-like substances) at the end of year.This indicates that DOM transport is dominated by spring snowmelt,and DOM humification is controlled by microbial degradation,with seasonal variations.It is expected that these relatively simple spectroscopic measurements(e.g.,EEM spectroscopy,HIX and SUVA) applied to depth-and temporally-distributed pore-water samples can provide useful insights into transport and humification of DOM in other subsurface environments as well.  相似文献   
126.
Irrigation with treated wastewaters as an alternative in countries with severe water shortage may influence the sorption of pesticides and their environmental effects, as wastewater contains higher concentrations of suspended and dissolved organic matter and inorganic compounds than freshwater. We have examined the sorption behaviour of three highly hydrophobic pesticides (the herbicide pendimethalin and the insecticides α-cypermethrin and deltamethrin) on a Mediterranean agricultural soil using the batch equilibration method. We considered wastewater, extracts from urban sewage sludge with different dissolved organic carbon contents, and inorganic salt solutions, using Milli Q water as a control. All pesticides were strongly retained by soil although some sorption occurred on the walls of the laboratory containers, especially when wastewater and inorganic salt solutions were used. The calculation of distribution constants by measuring pesticide concentrations in soil and solution indicated that pendimethalin sorption was not affected whereas α-cypermethrin and deltamethrin retention were significantly enhanced (ca. 5 and 2 times, respectively) when wastewater or salt solutions were employed. We therefore conclude that the increased sorption of the two pesticides caused by wastewater cannot be only the result of its dissolved organic carbon content, but also of the simultaneous presence of inorganic salts in the solution.  相似文献   
127.
A Bayesian-updating approach is presented to the estimation of total uncertainty-based Margin of Safety (MOS) for Total Maximum Daily Load (TMDL) calculations. Probability distributions are presented to construct the likelihood function, the prior probability distribution, and the posterior (total uncertainty) probability distribution. The Bayesian-updating approach is demonstrated through a case study for the Lower Amite River, Louisiana. The posterior probability distribution-based on the Bayesian approach updates the standard deviation of summer dissolved oxygen in the Amite River from 1.88 mg/L to 2.10 mg/L when the total uncertainty is considered. Results from the Bayesian-updating approach are compared with two conventional methods. The dissolved oxygen reserve based on a conventional margin of safety of 20% is estimated to be 45,682.26 kg/Day. The second conventional method, where we consider the standard deviation of 1.88 mg/L, produces a dissolved oxygen reserve of 40,516.09 kg/Day. The Bayesian approach yields the dissolved oxygen reserve of 38,614.43 kg/Day with the first level (μ-σ) of MOS, producing a deficit of 5606.65 kg/Day in dissolved oxygen. The dissolved oxygen reserve deficit increases to 23,895.13 kg/Day when the second level (μ-2σ) of MOS is used, which escalated to 42,383.52 kg/Day when the highest level (μ-3σ) of MOS is used. While the total uncertainty-based Bayesian approach is demonstrated for a TMDL development on the Amite River, the overall approach could be applied in any river system with similar available data.  相似文献   
128.
The Chicago Waterway System (CWS), used mainly for commercial and recreational navigation and for urban drainage, is a 122.8 km branching network of navigable waterways controlled by hydraulic structures. The CWS receives pollutant loads from 3 of the largest wastewater treatment plants in the world, nearly 240 gravity Combined Sewer Overflows (CSO), 3 CSO pumping stations, direct diversions from Lake Michigan, and eleven tributary streams or drainage areas. Even though treatment plant effluent concentrations meet the applicable standards and most reaches of the CWS meet the applicable water quality standards, Dissolved Oxygen (DO) standards are not met in the CWS during some periods. A Use Attainability Analysis was initiated to evaluate what water quality standards can be achieved in the CWS. The UAA team identified several DO improvement alternatives including new supplementary aeration stations. Because of the dynamic nature of the CWS, the DUFLOW model that is capable of simulating hydraulics and water quality processes under unsteady-flow conditions was used to evaluate the effectiveness of new supplementary aeration stations. This paper details the use of the DUFLOW model to size and locate supplementary aeration stations. In order to determine the size and location of supplemental aeration stations, 90% compliance with a 5 mg/l DO standard was used as a planning target. The simulations showed that a total of four new supplementary aeration stations with oxygen supply capacities ranging from 30 to 80 g/s would be sufficient to meet the proposed target DO concentration for the North Branch and South Branch of the Chicago River. There are several aeration technologies, two of which are already being used in the CWS, available and the UAA team determined that the total capital costs of the alternatives range from $35.5 to $89.9 million with annual operations and maintenance costs ranging from $554,000 to $2.14 million. Supplemental aeration stations have been shown to be a potentially effective means to improve DO concentrations in the CWS and will be included in developing an integrated strategy for improving water quality in the CWS.  相似文献   
129.
Stable carbon isotopes are important tools to assess potential storage sites for CO2, as they allow the quantification of ionic trapping via isotope mass balances. In deep geological formations high p/T conditions need to be considered, because CO2 dissolution, equilibrium constants and isotope fractionation of dissolved inorganic carbon (DIC) depend on temperature, pressure and solute composition. After reviewing different approaches to account for these dependencies, an expanded scheme is presented for speciation and carbon isotope fractionation of DIC and dissolution of CaCO3 for pCO2 up to 100 bar, pH down to 3 and temperatures of up to 200 °C. The scheme evaluates the influence of respective parameters on isotope ratios during CO2 sequestration. The pCO2 and pH are the dominant controlling factors in the DIC/δ13C/pH system. The fugacity of CO2 has major impact on DIC concentrations at temperatures below 100 °C at high pCO2. Temperature dependency of activities and equilibrium dominates at temperatures above 100 °C. Isotope ratios of DIC are expected to be about 1–2‰ more depleted in 13C compared to the free CO2 at pCO2 values above 10 bar. This depletion is controlled by carbon isotope fractionation between CO2 and H2CO3* which is the dominant species of DIC at the resulting pH below 5.  相似文献   
130.
以汾河运城段几个县界断面底泥和水质为实验目标,采用实验室测定方法,分别对在平水期、枯水期的底泥耗氧(SOD)速率进行测试,并对测试条件进行优化,对结果进行分析。研究表明,无论枯水期还是平水期,SOD总体变化趋势与河流水质污染(化学需氧量、氨氮)趋势基本一致。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号