首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   5篇
  国内免费   101篇
安全科学   22篇
废物处理   6篇
环保管理   33篇
综合类   182篇
基础理论   47篇
污染及防治   99篇
评价与监测   24篇
社会与环境   2篇
灾害及防治   2篇
  2023年   7篇
  2022年   21篇
  2021年   17篇
  2020年   20篇
  2019年   12篇
  2018年   10篇
  2017年   15篇
  2016年   13篇
  2015年   14篇
  2014年   7篇
  2013年   20篇
  2012年   18篇
  2011年   35篇
  2010年   14篇
  2009年   18篇
  2008年   26篇
  2007年   27篇
  2006年   21篇
  2005年   12篇
  2004年   10篇
  2003年   7篇
  2002年   13篇
  2001年   7篇
  2000年   6篇
  1999年   11篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
251.
正Swimming is excellent exercise and offers many health benefits.However,the"chlorine smell"in swimming pools may be a turn-off for some people.Although this smell is often thought to be of chlorine,it actually comes from volatile compounds that are produced from unintended reactions between disinfectants(e.g.,chlorine)and organic matter in  相似文献   
252.
It is generally accepted that a low dissolved oxygen(DO) concentration is more beneficial for achieving partial nitrification than high-DO. In this study, partial nitrification was not established under low-DO conditions in an intermittent aeration reactor for treating domestic wastewater. During the operational period of low-DO conditions(DO: 0.3 ±0.14 mg/L), stable complete nitrification was observed. The abundance of Nitrospira-like bacteria, which were the major nitrite-oxidizing bacteria, increased from 1.03 × 10~6to2.64 × 10~6cells/m L. At the end of the low-DO period, the batch tests showed that high-DO concentration(1.5, 2.0 mg/L) could inhibit nitrite oxidation, and enhance ammonia oxidation. After switching to the high-DO period(1.8 ± 0.32 mg/L), partial nitrification was gradually achieved. Nitrospira decreased from 2.64 × 10~6 to 8.85 × 10~5cells/m L. It was found that suddenly switching to a high-DO condition could inhibit the activity and abundance of Nitrospira-like bacteria, resulting in partial nitrification.  相似文献   
253.
Determination of halogen-specific total organic halogen(TOX) is vital for studies of disinfection of waters containing bromide, since total organic bromine(TOBr) is likely to be more problematic than total organic chlorine. Here, we present further halogen-specific TOX method optimisation and validation, focusing on measurement of TOBr. The optimised halogen-specific TOX method was validated based on the recovery of model compounds covering different classes of disinfection by-products(haloacetic acids, haloacetonitriles,halophenols and halogenated benzenes) and the recovery of total bromine(mass balance of TOBr and bromide concentrations) during disinfection of waters containing dissolved organic matter and bromide. The validation of a halogen-specific TOX method based on the mass balance of total bromine has not previously been reported. Very good recoveries of organic halogen from all model compounds were obtained, indicating high or complete conversion of all organic halogen in the model compound solution through to halide in the absorber solution for ion chromatography analysis. The method was also successfully applied to monitor conversion of bromide to TOBr in a groundwater treatment plant. An excellent recovery(101%)of total bromine was observed from the raw water to the post-chlorination stage. Excellent recoveries of total bromine(92%–95%) were also obtained from chlorination of a synthetic water containing dissolved organic matter and bromide, demonstrating the validity of the halogen-specific TOX method for TOBr measurement. The halogen-specific TOX method is an important tool to monitor and better understand the formation of halogenated organic compounds, in particular brominated organic compounds, in drinking water systems.  相似文献   
254.
• Liquid digestate humification was investigated under different oxidizing environment. • Tryptophan-like substances dominated the transformation of the liquid digestate DOM. • The humification sequence of the liquid digestate DOM was identified. • UV325 was first identified as a pre-humus intermediate during humification reaction. The formation of humic-like acids (HLAs) is an essential process for converting liquid digestate into organic soil amendments to enhance agricultural sustainability. The aim of this study was to investigate the impact of oxygen and/or MnO2 on the production of HLAs. Herein, abiotic humification performance of the digestate dissolved organic matter (DOM) is investigated with fluxes of air and N2 in the absence and presence of MnO2. Our results demonstrated that the fate of digestate DOM greatly depends on the oxidizing environment, the MnO2 enhanced nitrogen involved in the formation of HLAs. The synergistic effects of MnO2 and oxygen effectively improved the production of HLAs, and the corresponding component evolution was analyzed using spectroscopic evidence. The two-dimensional correlation spectroscopy results demonstrated that the reaction sequence of digestate DOM followed the order of protein-like substances, substances with an absorbance at 325 nm, substances with UV absorbance at 254 nm and HLAs. Additionally, excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) showed that tryptophan-like C3 was more prone to transformation than tyrosine-like C2 and was responsible for the humification process. The substance with an absorbance at 325 nm was a reaction intermediate in the transformation process of protein-like substances to HLAs. The above findings can be used to promote the production of liquid fertilizer associated with carbon sequestration as well as the sustainable development of biogas production.  相似文献   
255.
•Tryptophan protein, and aromatic protein I/II were the key identified proteins. •Cysteine was more correlated with methane production than other amino acids. •The presence of cysteine can promote methane production and degradation of VFAs. •The presence of cysteine can lower ORP and increase biomass activity. •Predominant Tissierella and Proteiniphilum were noted in pretreated sludge samples. Many studies have investigated the effects of different pretreatments on the performance of anaerobic digestion of sludge. However, the detailed changes of dissolved organic nitrogen, particularly the release behavior of proteins and the byproducts of protein hydrolysis-amino acids, are rarely known during anaerobic digestion of sludge by different pretreatments. Here we quantified the changes of three types of proteins and 17 types of amino acids in sludge samples solubilized by ultrasonic, thermal, and acid/alkaline pretreatments and their transformation during anaerobic digestion of sludge. Tryptophan protein, aromatic protein I, aromatic protein II, and cysteine were identified as the key dissolved organic nitrogen responsible for methane production during anaerobic digestion of sludge, regardless of the different pretreatment methods. Different from the depletion of other amino acids, cysteine was resistant to degradation after an incubation period of 30 days in all sludge samples. Meanwhile, the “cysteine and methionine metabolism (K00270)” was absent in all sludge samples by identifying 6755 Kyoto Encyclopedia of Genes and Genomes assignments of genes hits. Cysteine contributed to the generation of methane and the degradation of acetic, propionic, and n-butyric acids through decreasing oxidation-reduction potential and enhancing biomass activity. This study provided an alternative strategy to enhance anaerobic digestion of sludge through in situ production of cysteine.  相似文献   
256.
Dissolved inorganic nitrogen (DIN) plays an important role in aquatic ecosystems as an available source of nitrogen (N). Despite recent advances in our understanding of the effects of climate change on DIN in coastal waters, shallow high-latitude lakes exposed to large seasonal temperature differences have received limited research attention. Therefore, in the present study, Baiyangdian Lake (BYDL) was selected as the study area, as a typical high latitude shallow lake in North China. Based on water and sediment samples collected in spring, summer and winter seasons, DIN accumulation in sedimentary pore water and DIN diffusion fluxes at the sediment-water interface were quantified under different temperature conditions. Correlation analysis was used to establish the effects of temperature on DIN concentration and diffusion in different media. Results show that the diffusion of DIN at the lake sediment-water interface exhibited a strongly positive relationship with temperature, suggesting that high temperature conditions lead to greater DIN release from sediments. Cold temperatures cause DIN accumulation in sedimentary pore water, providing sufficient substrate for N-related bacteria in the sediment under cold temperature conditions. Temperature controls the vertical distribution of DIN by affecting its migratory diffusion and transformation at the sediment-water interface. These findings are valuable for understanding the impact of climate change on the distribution of N in inland shallow lakes, especially in high latitude shallow lakes subjected to large seasonal temperature differences throughout the year.  相似文献   
257.
Dissolved organic nitrogen (DON) has attracted much attention in drinking water treatment due to its potential to produce nitrogenous disinfection by-products (N-DBPs). This work was designed to explore the transformation and fate of DON and dissolved inorganic nitrogen (DIN) in drinking water treatment. The changes of DON and formation of N-DBPs were evaluated along the water treatment route (i.e., pre-ozonation and biological-contact oxidation, delivery pipes’ transportation, coagulation-sedimentation, sand filtration, post-ozonation, biological activated carbon, ultrafiltration and disinfection) of drinking water treatment plant (DWTP). The transformation mechanism of DON was comprehensively investigated by molecular weight fractionation, three-dimensional fluorescence, LC-OCD (Liquid Chromatography-Organic Carbon Detection), total free amino acids. A detailed comparison was made between concentrations and variations of DON and DIN affected by seasons in the drinking water treatment. Regardless of seasonal variation in raw water concentration, the DON removal trends between different treatment processes remain constant in the present study. Compared to other treatment processes, pre-ozonation and coagulation-sedimentation exhibited the dominant DON removal in different seasons, i.e., 11.13%-14.45% and 14.98%-22.49%, respectively. Contrary, biological-contact oxidation and biological activated carbon negatively impacted the DON removal, in which DON increased by 1.76%-6.49% in biological activated carbon. This may be due to the release of soluble microbial products (SMPs) from bacterial metabolism, which was further validated by the rise of biopolymers in LC-OCD.  相似文献   
258.
Biochar has been used increasingly as a soil additive to control mercury (Hg) pollution in paddy rice fields. As the most active component of soil organic matter, soil dissolved organic matter (DOM) plays a vital role in the environmental fate of contaminants. However, there are very few studies to determine the impact of biochar on the Hg cycle in rice paddies using insights from DOM. This study used original and modified biochar to investigate their effect on DOM dynamics and their potential impact on methylmercury (MeHg) production and bioaccumulation in rice plants. Porewater DOM was collected to analyze the variations in soil-derived DOM in paddy soils. The results showed that the addition of biochar, whether in original or modified form, significantly reduced the bioaccumulation of MeHg in rice plants, especially in hulls and grains (p<0.05). However, MeHg production in soils was only inhibited by the modified biochar. Biochar addition induced a significant increase in DOM's aromaticity and molecular weight (p<0.05), which decreased Hg bioavailability. Furthermore, enhanced microbial activity was also observed in DOM (p<0.05), further increasing MeHg production in the soil. Thus, the effect of biochar on the fate of Hg cycle involves competition between the two different roles of DOM. This study identified a specific mechanism by which biochar affects Hg behavior in rice paddy soil and contributes to understanding the more general influence of biochar in agriculture and contaminant remediation.  相似文献   
259.
This work focuses on the spatial variability of dissolved reactive phosphate along the west coast of India. In this study, samples of surface and bottom water was collected from each of the 27 sites during a single pre-monsoon transect along the west coast of India to study the variation of dissolved reactive phosphate. Phosphate showed an enrichment pattern with increase in depth of the water column. In addition to this, an offshore increase in phosphate concentrations was noticed for both surface and bottom stations. Almost all the surface stations of this study area were found to be characterized by negative apparent oxygen utilization (AOU) values, and bottom stations of the deeper offshore zone (200 m depth) displayed large positive AOU values. The bottom stations of shallow near coastal waters and the deeper offshore zone are characterized by an inverse relationship between phosphate and dissolved oxygen, whereas at these depths, a direct relation was observed between phosphate and AOU. AOU is calculated as the difference between oxygen saturation value at the in situ temperature and salinity and the actual measured concentration. This oxidative re-mineralization mechanism decreases the observed dissolved oxygen well below the expected theoretical values, which is concordant with the higher concentration of phosphate and high positive AOU values.  相似文献   
260.
The growth and alkaline phosphatase activity (APA) of two raphidophyceae species Chattonella marina and Heterosigma akashiwo were investigated in response to P-limitation and subsequent addition of dissolved inorganic phosphorus (DIP, NaH2PO4) and two dissolved organic phosphorus (DOP) compounds: guanosine 5-monophosphate (GMP) and triethyl phosphate (TEP). APA levels increased greatly after P-starvation as the decrease of the cellular phosphorus quotes (Qp). C. marina responded to P-limitation quickly and strongly, with 10-fold increase in APA within 24 hr after P-starvation. The larger difference between maximal and minimal QP values in C. marina indicated its high capacity in P storage. APA of H. akashiwo was maximally enlarged about 2.5 times at 48 hr of P-starvation. After the addition of nutrients, cell numbers of C. marina increased in all treatments including the P-free culture, demonstrating the higher endurance of C. marina to P-limitation. However, those of H. akashiwo increased only in DIP and GMP cultures. APA increased only after the addition of the monophosphate ester GMP. The results suggest that quick responses of C. marina to P-limitation, high capacity in P storage as well as endurance for P-depletion provide this species an ecological advantage in phytoplankton community competition under DIP-limited conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号