首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2030篇
  免费   271篇
  国内免费   1435篇
安全科学   101篇
废物处理   202篇
环保管理   195篇
综合类   1767篇
基础理论   619篇
污染及防治   744篇
评价与监测   45篇
社会与环境   55篇
灾害及防治   8篇
  2024年   4篇
  2023年   53篇
  2022年   92篇
  2021年   88篇
  2020年   107篇
  2019年   121篇
  2018年   127篇
  2017年   144篇
  2016年   177篇
  2015年   181篇
  2014年   154篇
  2013年   337篇
  2012年   219篇
  2011年   183篇
  2010年   159篇
  2009年   154篇
  2008年   130篇
  2007年   198篇
  2006年   196篇
  2005年   145篇
  2004年   137篇
  2003年   123篇
  2002年   88篇
  2001年   50篇
  2000年   76篇
  1999年   68篇
  1998年   48篇
  1997年   44篇
  1996年   30篇
  1995年   24篇
  1994年   20篇
  1993年   26篇
  1992年   7篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   2篇
  1986年   6篇
  1981年   1篇
  1977年   1篇
排序方式: 共有3736条查询结果,搜索用时 452 毫秒
131.
Fe3+掺杂TiO2薄膜的制备及光催化降解甲醛的研究   总被引:8,自引:0,他引:8  
采用溶胶-凝胶法制备Fe3+掺杂的TiO2薄膜光催化剂,进行甲醛的光催化实验,考察Fe3+掺杂量、薄膜焙烧温度及溶胶体系pH值对光催化性能的影响。结果表明,Fe3+掺杂量为1.0%,焙烧温度500℃1h,加硝酸溶胶体系pH=4时,Fe3+掺杂TiO2薄膜光催化活性最高。  相似文献   
132.
在中温(35℃±1℃)厌氧条件下,以葡萄糖为共基质,采用间歇实验方法,研究了2,6-二硝基酚(2,6-DNP)的厌氧产甲烷毒性和厌氧降解动力学.厌氧毒性试验(ATA)以累计产甲烷量和相对活性(RA)为指标,评价了不同浓度2,6-DNP对产甲烷菌的抑制程度;结果表明,2,6-DNP浓度<20 mg/L时,对产甲烷菌没有抑制作用,浓度为40 mg/L时产生轻度抑制,浓度为80~120 mg/L时产生重度抑制;24 h 2,6-DNP的75%、50%、25%相对抑制浓度分别为30、70和>120 mg/L.2,6-DNP降解动力学可用Haldane方程来描述,利用非线性拟合求得动力学参数Ks、Rm、Ki分别为179.7 mg/L、4.84 mg/g VSS·h、206.5 mg/L,方差R2=0.94,拟合效果很好.  相似文献   
133.
抗生素的大量使用导致其通过各种途径进入到污水处理厂、地表水甚至饮用水源水中.在污水处理厂二级出水排放之前以及自来水的生产和供应过程中,都必须进行氯化消毒处理以杀灭病原微生物.在此过程中,抗生素一方面可能被氯化降解,另一方面也可能转化成毒性更高的降解产物.因此,了解抗生素在氯化消毒过程中的降解行为对于明确其生态和健康风险...  相似文献   
134.
The process of the rice straw degradation in the fermentor with aeration at 290 ml/h was studied. The results of dissolved oxygen (DO) indicated that the optimum DO during cellulose degradation by microbial community MC1 ranged from 0.01 to 0.12 mg/L. The change model ofpH values was as follows: irrespective of the initial pH of the medium, pH values decreased rapidly to approximate 6.0 after being inoculated within 48 h when cellulose was strongly degraded, and then increased slowly to 8.0--9.0 until cellulose was degraded completely. During the degradation process, 15 kinds of organic compounds were checked out by GC-MS. Most of them were organic acids. Quantity analysis was carried out, and the maximum content compound was ethyl acetate which reached 13.56 g/L on the day 4. The cellulose degradation quantity and ratio analyses showed that less quantity (under batch fermentation conditions) and longer interval (under semi-fermentation conditions) of rice straw added to fermentation system were contributed to matching the change model of pH, and increasing the quantity and ratio of rice straw degradation during cellulose degrading process. The highest degradation ratio was observed under the condition office straw added one time every five days (under semi-fermentation conditions).  相似文献   
135.
对玻璃基底和金属基底的铝反射膜在紫外、低能电子、低能质子的综合环境作用下的光谱反射率退化进行了实验研究。试验结果表明两种铝反射膜的光谱反射率均发生了退化,且光谱反射率的退化主要集中在可见光波段,在近红外波段退化很小;玻璃基底铝反射膜退化在420 nm左右出现峰值点,2种金属基底铝反射膜的退化的峰值点在450 nm左右。由于电荷沉积在玻璃中后会抑制带电粒子入射,因此玻璃基底铝反射膜的退化要小于金属基底铝反射膜。  相似文献   
136.
Abstract

The roles of PM2.5-induced mitochondrial damage and oxidative stress on mast cell degranulation were examined in vitro. Mast cells were treated with suspensions of PM2.5 in Dulbecco’s modified Eagle’s medium at concentrations from 25 to 200?mg/L in the absence or presence of 10?mmol/L N-acetyl-L-cysteine. Biological effects and mitochondrial function were assessed by determining cell viability, β-hexosaminidase release, interleukin-4 secretion, reactive oxygen species generation, adenosine triphosphate production, potential alteration of mitochondrial membrane, and activities of mitochondrial electron transport chain complexes I and III. Exposure of mast cells to PM2.5 induced reduction of adenosine triphosphate production, collapse of mitochondrial membrane potential, and inhibition of the activity of complex III. Co-treatment of mast cells exposed to PM2.5 with N-acetyl-L-cysteine attenuated cytotoxicity and the production of reactive oxygen species, and decreased the release of β-hexosaminidase and interleukin-4. Evidently, PM2.5-induced oxidative stress plays an essential role in mitochondrial toxicity and mast cell activation.  相似文献   
137.
利用热重分析仪在空气气氛、不同的升温速率下对带壳稻谷粉和玉米粒粉进行了热重测试,依据热重实验数据,采用多种热解动力学分析方法计算了水稻和玉米的活化能数值并进行比较,结果表明水稻和玉米的热氧化反应活化能随着转化率出现先增加后降低的趋势,并在转化率为70%左右达到了极大值。  相似文献   
138.
• PAM degradation in thermophilic AD in comparison with mesophilic AD. • PAM degradation and its impact on thermophilic and mesophilic AD. • Enhanced methane yield in presence of PAM during thermophilic and mesophilic AD. • PAM degradation and microbial community analysis in thermophilic and mesophilic AD. Polyacrylamide (PAM) is generally employed in wastewater treatment processes such as sludge dewatering and therefore exists in the sludge. Furthermore, it degrades slowly and can deteriorate methane yield during anaerobic digestion (AD). The impact or fate of PAM in AD under thermophilic conditions is still unclear. This study mainly focuses on PAM degradation and enhanced methane production from PAM-added sludge during 15 days of thermophilic (55°C) AD compared to mesophilic (35°C) AD. Sludge and PAM dose from 10 to 50 g/kg TSS were used. The results showed that PAM degraded by 76% to 78% with acrylamide (AM) content of 0.2 to 3.3 mg/L in thermophilic AD. However, it degraded only 27% to 30% with AM content of 0.5 to 7.2 mg/L in mesophilic AD. The methane yield was almost 230 to 238.4 mL/g VSS on the 8th day in thermophilic AD but was 115.2 to 128.6 mL/g VSS in mesophilic AD. Mechanism investigation revealed that thermophilic AD with continuous stirring not only enhanced PAM degradation but also boosted the organics release from the sludge with added PAM and gave higher methane yield than mesophilic AD.  相似文献   
139.
The Yellow River is the second longest river in China and the cradle of the Chinese civilization. The source region of the Yellow River is the most important water holding area for the Yellow River, about 49.2% of the whole runoff comes from this region. However, for the special location, it is a region with most fragile eco-environment in China as well. Eco-environmental degradation in the source region of the Yellow River has been a very serious ecological and socially economic problem. According to census data, historical documents and climatic information, during the last half century, especially the last 30 years, great changes have taken place in the eco-environment of this region. Such changes are mainly manifested in the temporal-spatial changes of water environment, deglaciation, permafrost reduction, vegetation degeneracy and desertification extent, which led to land capacity decreasing and river disconnecting. At present, desertification of the region is showing an accelerating tendency. This paper analyzes the present status of eco-environment degradation in this region supported by GIS and RS, as well as field investigation and indoor analysis, based on knowledge, multi-source data is gathered and the classification is worked out, deals with their natural and anthropogenic causes, and points out that in the last half century the desertification and environmental degradation of this region are mainly attributed to human activities under the background of regional climate changes. To halt further degradation of the environment of this region, great efforts should be made to use land resources rationally, develop advantages animal agriculture and protect the natural grassland.  相似文献   
140.
The structure and function of the coastal wetland ecosystem in the southern Laizhou Bay have been changed greatly and influenced by regional hydrological changes. The coastal wetlands have degraded significantly during the latest 30 years due to successive drought, decreasing of runoff, pollution, underground saline water intrusion, and aggravating marine disasters such as storm tides and sea level rising. Most archaic lakes have vanished, while artificial wetlands have been extending since natural coastal wetlands replaced by salt areas and ponds of shrimps and crabs. The pollution of sediments in inter-tidal wetlands and the pollution of water quality in sub-tidal wetlands are getting worse and therefore “red tides” happen more often than before. The biodiversity in the study area has been decreased. Further studies are still needed to protect the degraded coastal wetlands in the area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号