首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
安全科学   27篇
废物处理   1篇
环保管理   1篇
综合类   1篇
  2023年   3篇
  2021年   2篇
  2020年   5篇
  2016年   1篇
  2015年   6篇
  2014年   1篇
  2013年   3篇
  2011年   2篇
  2007年   4篇
  2005年   1篇
  2003年   1篇
  1995年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
11.
Prescribed burning is commonly used to prevent accumulation of biomass in fire-prone shrubland in NW Spain. However, there is a lack of knowledge about the efficacy of the technique in reducing fire hazard in these ecosystems. Fire hazard in burned shrubland areas will depend on the initial capacity of woody vegetation to recover and on the fine ground fuels existing after fire. To explore the effect that time since burning has on fire hazard, experimental tests were performed with two fuel complexes (fine ground fuels and regenerated shrubs) resulting from previous prescribed burnings conducted in a gorse shrubland (Ulex europaeus L.) one, three and five years earlier. A point-ignition source was used in burning experiments to assess ignition and initial propagation success separately for each fuel complex. The effect of wind speed was also studied for shrub fuels, and several flammability parameters were measured. Results showed that both ignition and initial propagation success of fine ground fuels mainly depended on fuel depth and were independent of time since burning, although flammability parameters indicated higher fire hazard three years after burning. In contrast, time since burning increased ignition and initial propagation success of regenerated shrub fuels, as well as the flammability parameters assessed, but wind speed had no significant effect. The combination of results of fire hazard for fine ground fuels and regenerated shrubs according to the variation in relative coverage of each fuel type after prescribed burning enabled an assessment of integrated fire hazard in treated areas. The present results suggest that prescribed burning is a very effective technique to reduce fire hazard in the study area, but that fire hazard will be significantly increased by the third year after burning. These results are valuable for fire prevention and fuel management planning in gorse shrubland areas.  相似文献   
12.
Although the diffusion of its storage and transport under liquefied conditions, nowadays it is common to have methane in gaseous form in several industrial applications. This leads to safety implications to be considered: hazards are linked to both the high-pressure at which the gas is kept and to its flammability. Scenarios where flammable jets impact an obstacle are of paramount importance because of their possible occurrence. Following a numerical approach, literature shows up that their assessment can be reliably performed by means of only Computational Fluid Dynamics tools. However, despite the improvements of computing power, Computational Fluid Dynamics costs still limit its use in daily risk analysts’ activities. Therefore, considering an accidental jet-obstacle scenario of industrial interest, the present work investigates how a pipe rack can influence the development of a high-pressure methane jet. Based on a Computational Fluid Dynamics analysis, main achievements of this work are a simple criterion able to identify the situations where the pipe rack does not influence the high-pressure methane jet behavior, therefore allowing to identify the scenarios where simpler models can be used (i.e., analytical correlations known for the free jet situation), and, if present, a simple analytical relationship that roughly predicts the influence of the pipe rack without the need of performing complex Computational Fluid Dynamics simulations.  相似文献   
13.
Acrylonitrile–Butadiene–Styrene (ABS), Polycarbonate (PC) and their alloys are widely used in automotive industry, computer and equipment housings. With increasing disposal of end-of-life electronic equipment, there is also an increased demand for recycling of these materials so that they do not pose environmental challenge as solid waste. One of the recycling approaches is mechanical recycling of these thermoplastics where recycled plastic is melt blended with virgin materials to obtain a high quality product. Besides obtaining desirable mechanical properties, such blends should also conform to fire safety standards. In this work, a series of blends were prepared using PC and ABS recovered from discarded computers and virgin materials using a twin-screw extruder. Their flammability properties were evaluated using burner flammability tests and Ohio State University (OSU) release rate tests. It was found that the extinguishing time, burning extent and weight loss appears to progressively decrease with the addition of both virgin or recycled PC to virgin or recycled ABS. It was also seen that the addition of the 70% of PC, virgin or recycled, to ABS virgin or recycled, appears to significantly decrease heat release and smoke evolution. The results of this study indicate that recycled polycarbonate can be used as an additive for virgin or recycled ABS, as a means of giving flame resistance to ABS in high-value applications. This result is significant when related to the result obtained by a separate study indicating that up to 25% of recycled material can be used without degradation of mechanical properties in the presence of 15% short glass fiber reinforcement.  相似文献   
14.
Although the hazards of aerosol fires and explosions have been studied for decades the data for aerosol flame propagation is still scarce. Additionally there is a lack of standard techniques and measurement apparatus, which impedes the development of optimal aerosol hazard mitigation measures. The focus of this study is development of an improved aerosol electrospray device for the generation of high quality aerosol data. The goal is achieved through higher nozzle packing, precise nozzle and mesh hole alignment and adding two ground meshes. In addition to a flat ground mesh, the utilization of a cylindrical ground mesh demonstrated improved confinement and guidance of droplets. Duratherm 600, heat transfer fluid, was examined to demonstrate the modified electrospray device capabilities as compared to previous design. Results show the modified electrospray can produce more uniform droplets, more even test chamber dispersion, smaller droplet size and higher concentration aerosol, which is essential to study aerosol flame propagation. Accordingly, the results of aerosol flame speed tests for the improved design were more reproducible. Moreover, it was found that a traditional propane pilot flame was unable to ignite the smaller aerosol droplet size due to the strong turbulence generated by the open flame. However, by careful modification of the pilot flame length, the turbulence decreased dramatically and the small droplet size aerosol can be tested.  相似文献   
15.
Ionic liquid (IL) mixtures are promising because they can optimize the involved properties according to industrial needs. It has already been demonstrated that IL flammability is due mainly to IL decomposition generating flammable substances. Four different ILs, 1-Butylimidazolium tetrafluoroborate ([BIM][BF4]), 1-butylimidazolium nitrate ([BIM][NO3]), 1-butyl-3-methylimidazolium tetrafluoroborate([BMIM][BF4]), and 1-butyl-3-methylimidazolium nitrate ([BMIM][NO3]), were selected as the parent salts to form the different imidazolium-based IL binary mixtures. These mixtures were tested via isothermal thermogravimetric analyzer (TGA) at different temperatures (120, 150, 180, 210, and 240 °C), then tested by the flash point analyzer after isothermal heating pretreatment at the above temperatures. Results show that the mixtures' flash point values decrease with the heating temperature increase. Vaporization of the IL mixtures’ decomposition products results in a higher concentration of flammable gases and a flash point decrease, which lead to the flammability hazard increasing. Moreover, results show that the flash points of the studied binary imidazolium IL mixtures are more similar to those of the more unstable IL in their parent ILs. Also, the flammability hazard of IL binary mixtures may obviously increase under the high temperature environment for a long time.  相似文献   
16.
The utilization of low-quality gaseous fuel from biomass gasification and the abundance of oxygen-rich streams obtained as a by-product of nitrogen-air separation by membrane technology has incentivized the development of sustainable oxygen-enriched combustion technologies in the last decades. However, a dearth of experimental and numerical analysis addressing the reactivity and safety aspects of these mixtures at initial low temperatures can be observed in the current literature.In this work, the heat flux burner was adopted for the measurement of the laminar burning velocity of methane in oxygen enriched air at different equivalence ratios. Results were compared with numerical data obtained by means of detailed kinetic mechanisms developed at the University of Bologna and the Gas Research Institute (GriMech3.0). Simplified correlations for the estimation of the laminar burning velocity with respect to the oxygen content at any equivalence ratio were developed, tested and evaluated.An elemental reaction-based function was found appropriate for the estimation of the overall reactivity of the investigated mixtures. Besides, numerical analyses were performed to characterize the flame structures in terms of temperature and product distribution under several initial conditions. These results gave further insights into the reaction mechanisms of gaseous fuels in the case of oxygen-enriched air, highlighting potential bottlenecks for kinetic model refinements. Eventually, relevant safety parameters were estimated, in particular the flammability range of the fuel/oxidant mixture, in terms of lower and upper flammability limits.  相似文献   
17.
High-pressure gaseous methane release is a relevant safety-related problem mainly in the Oil and Gas industry. As well documented, the reason for these safety concerns is connected with the severe consequences of the domino effect subsequent to the possible ignition. In risk assessment activities, estimation of the damage area is of primary importance in order to draw up proper safety guidelines. To do this, loss prevention specialists use quick and well-established numerical tools (i.e., integral models) in their daily activities. However, the presence of an obstacle in the flow field of the jet (e.g., the ground) is a more probable situation to deal with. It is known that integral models fail in this kind of scenario, leading to unreliable predictions. Hence, the present work investigates how an industrial ground surface influences the LFL cloud size of a horizontal high-pressure methane jet. An innovative quick procedure is proposed allowing to determine the height below which the ground begins to influence the LFL cloud size and the extent of such influence. Therefore, this procedure allows practitioners to establish when integral models can be used and when not to use them, and also provides a simple and reliable alternative to their use. These analytical instruments are derived from an extensive computational fluid dynamics analysis performed with Ansys Fluent 19.0.  相似文献   
18.
An experimental investigation of flammability limits of hydrogen, methane and propane in air and oxygen at reduced pressures was carried out. A slow influence of sizes of an experimental vessel of a diameter higher than 125 mm on the flammability limits was revealed, but an influence of a type of an oxidizer (air or oxygen) and an ignition energy is significant. Critical values of an initial pressure for a possibility of a flame propagation were determined. The limiting values of the ignition energy were determined, for which an elevation of this parameter does not influence the critical pressure and the flammability region. A qualitative interpretation of obtained experimental results is given, which is based on a peculiarities of a flame initiation.  相似文献   
19.
Flammability limits of fuel-air and fuel-air-inert gaseous mixtures, especially at non-atmospheric conditions, are essential properties required for establishing safety operating conditions for handling and processing flammable gases. For pure fuels, an important data pool exists, formed by the flammability limits of fuel-air and fuel-air-inert gaseous mixtures at ambient initial conditions measured by standard methods. Such methods can be used for experimental determination of flammability limits for multi-fuels mixed with air, with or without additives, under non-atmospheric conditions. Their use is however a time- and material-consuming process; in addition, the flammability limits obtained by various standard methods may be scattered as a result of different choices in the operating parameters, for each standard method. It appears that a preliminary estimation of the flammability limits for fuel-air and fuel-air-inert gaseous mixtures can minimize the effort of measuring them in specific initial conditions.The present paper describes a new method for estimating the flammability range of fuel-oxidizer gaseous mixtures based on measurements of explosivity properties e.g. the peak explosion pressure and maximum rate of pressure rise recorded during closed vessel laminar explosions of fuel-oxidizer mixtures far from limits. Data obtained for several hydrocarbon-air gaseous mixtures with or without inert gas addition are used to examine the accuracy of estimated flammability limits (LFL – the lower and UFL – the upper flammability limit) as well as of the Limiting Oxygen Concentration (LOC) and the Minimum Inert Concentration (MIC). The predictive ability of the proposed method is examined against the predictive ability of other recently described methods.  相似文献   
20.
The classification of flammable gas mixtures is based on either testing or calculation methods proposed by the revised international standard ISO 10156. This standard is used for classification of physical hazards in Chapters 2.2 and 2.4 of the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS) and in the UN Recommendations on Transport of Dangerous Goods (TDG). The test methods of flammability and oxidizing potential in this standard were developed by BAM. Earlier versions of this standard are not based on triangular diagrams and on the reference combustible substance “ethane”. The old material characteristics, especially in case of oxidizing potential, are based mostly on practical experience without any quantifiable test results. First time it is possible to compare experimental results from the CHEMSAFE database with the newly developed calculation method. In this paper the basic principles of the calculation methods are presented and the methods are validated by examples. A comparison of experimental flammability data with classification results gained by the calculation methods of ISO 10156 is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号