首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1073篇
  免费   89篇
  国内免费   308篇
安全科学   80篇
废物处理   152篇
环保管理   173篇
综合类   569篇
基础理论   137篇
污染及防治   207篇
评价与监测   39篇
社会与环境   21篇
灾害及防治   92篇
  2024年   3篇
  2023年   19篇
  2022年   38篇
  2021年   48篇
  2020年   43篇
  2019年   30篇
  2018年   49篇
  2017年   55篇
  2016年   50篇
  2015年   51篇
  2014年   109篇
  2013年   103篇
  2012年   80篇
  2011年   91篇
  2010年   60篇
  2009年   63篇
  2008年   46篇
  2007年   77篇
  2006年   70篇
  2005年   46篇
  2004年   33篇
  2003年   41篇
  2002年   45篇
  2001年   32篇
  2000年   32篇
  1999年   26篇
  1998年   22篇
  1997年   19篇
  1996年   27篇
  1995年   21篇
  1994年   8篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1987年   2篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有1470条查询结果,搜索用时 15 毫秒
351.
王凯军  石川  刘越 《环境工程学报》2021,15(6):1840-1861
有机固废的高效转化和循环利用对解决全球环境污染、能源短缺和资源缺乏等共性问题具有积极作用。采用厌氧发酵技术高效处理有机固废,可合成制备出不同酸化产物,并促进酸化产品的加工应用。在文献及工程调研的基础上,梳理了有机固废厌氧酸化发酵的不同代谢途径,分析了不同酸化产物的经济性及工程化应用现状。以发酵产物乙醇、乳酸、丙酸和丁酸等为代表,分析了酸化产品的制备及应用状况。采用系列宏观与微观的调控手段,可促进酸化发酵目标产物的代谢转化,并实现有机固废酸化发酵脂肪酸类产物的高效合成,从而为发酵脂肪酸类产品的制备生产和加工应用提供参考。  相似文献   
352.
如何选择厨余垃圾处理模式以实现环境、经济效益的最大化是生活垃圾分类工作中的一个关键问题,但目前还缺乏系统分析。以回收利用率、碳排放和全周期费用为衡量指标,综合比较了混合焚烧、厌氧消化、好氧堆肥和饲料化4种厨余垃圾处理模式。结果表明,饲料化的环境效应最好,其回收利用率为80%~95%,碳排放(以二氧化碳当量计)为−112~−67 kg·t−1。同时发现,厌氧消化也具有较好的环境效应,回收利用率可达31%~42%,而碳排放为−209~−65 kg·t−1。好氧堆肥可以产生肥料并通过腐殖化固定有机碳,其回收利用率与厌氧消化接近,但一旦其温室气体泄漏,则会导致显著的碳排放;好氧堆肥在充分供氧的条件下,碳排放可以从420 kg·t−1降低至10 kg·t−1。厨余垃圾含水率高,混合焚烧发电的回收利用率仅为9%,碳减排效应可忽略;但通过热电联产提高系统热效率则可以实现碳减排。混合焚烧的全周期费用最低,而分类处理的全周期费用则比之高出125元·t−1,这些费用主要来自于垃圾分类工作开始阶段的宣教、监管支出。综和考虑以上各项研究结果可得出结论,厨余垃圾处理模式的优先顺序为:饲料化、厌氧消化、好氧堆肥、混合焚烧。  相似文献   
353.
针对废手机线路板碱性矿浆电解资源化过程中电解液带来的污染问题,采用氨-氯化铵碱性矿浆电解液循环回收废手机线路板中金属,以降低能耗、减少污染。研究了氨-氯化铵碱性矿浆电解体系从废手机板制备阴极铜的过程中,电解液循环对Cu的回收率、电流效率、Cu纯度以及Cu和Ni、Zn、Pb等金属迁移转化的影响。经过7次电解液循环实验,结果表明,电解液循环对Ni、Zn、Pb等金属分布及电流效率的影响十分显著,但Cu的分布、纯度及回收率基本不受影响。Cu主要分布在电解液和沉积物中,其他金属则主要在电解液与阳极渣中;8组实验获得的沉积物中Cu的纯度和回收率分别高于99.9%和90%。基于碱性矿浆电解回收废手机板中金属工艺中,完全可以实现电解液的循环利用。本研究可为碱性矿浆电解废线路板提供参考。  相似文献   
354.
利用废弃绿茶叶粉末(简称茶叶末)作为吸附剂,考察了pH、温度、时间等对水溶液中Co2+的影响。结果表明:(1)茶叶末对Co2+的吸附量随着pH的上升而上升,其中pH=5.50为最佳。茶叶末对Co2+的吸附量均随时间延长呈现上升趋势,吸附速度先快后慢,吸附最佳时间为90min。(2)不同温度下,茶叶末对Co2+的吸附较好地符合Langmuir模型。该吸附过程是化学离子交换过程,主要发生在重金属离子与羟基、氨基的氢原子之间。(3)茶叶末对Co2+的吸附是自发、放热过程,降温有利于吸附,反应时吸附界面上的混乱度增加。(4)盐酸是很好的解吸介质,解吸率为92.65%。通过灼烧(或燃烧)可以回收水溶液中绝大部分的Co2+,不仅减小了对环境的污染,而且节约了资源。  相似文献   
355.
以城市污泥为原料与MgCl2和FeSO4复合,并热解碳化合成磁性污泥基生物炭(MF-SBC),用于水中氮磷的同步回收研究,分别考察了MF-SBC投加量、初始pH、接触时间和共存离子对氮磷回收性能的影响,同时通过SEM、XRD、BET、XPS和FTIR表征了MF-SBC的组成、形貌和官能团等,并对反应过程进行了动力学拟合。结果表明,当MF-SBC投加量为0.3 g·L−1、溶液初始pH为7、反应时间为720 min时,MF-SBC对水溶液中氨氮和磷酸盐的回收效果最佳,吸附量分别为103.12 mg·g−1和205.07 mg·g−1,并且MF-SBC对水中氨氮和磷酸盐的回收过程均符合准二级动力学模型。Ca2+、Na+、SO42对MF-SBC回收磷酸盐几乎没有影响,Ca2+和SO42-对氨氮的回收有抑制作用。MF-SBC对氮磷的回收机制包括表面吸附、离子交换和鸟粪石沉淀,其中以鸟粪石沉淀为主。  相似文献   
356.
建立了环境水样中三氯卡班(TCC)的预处理和测定方法。考察了3种固相萃取(SPE)小柱、5种洗脱液对TCC回收率的影响。结果表明,采用ENVI-18 SPE小柱、以乙酸乙酯/乙腈(1:1)为洗脱液、高效液相色谱仪-紫外检测器(HPLC-UV)检测,以蒸馏水为背景溶液TCC的加标回收率高达95%,仪器检出限与定量限分别为2.37与7.89μg/L。该方法用于实际环境水样,TCC加标浓度1~10μg/L,污水厂进水、出水与地表水中TCC的加标回收率分别在89.38%~96.90%、87.74%~94.34%与83.64%~94.61%之间,表明所建立的SPE-HPLC法适合城市生活污水和地表水中痕量TCC的检测。运用该方法测定实际环境水样中的TCC含量,集美污水处理厂进水与出水中TCC浓度分别为1.35与0.22μg/L;华大污水厂进水与出水中TCC浓度分别为1.05与0.53μg/L;白鹭湖水样中的TCC浓度为1.11μg/L。  相似文献   
357.
针对传统方法不能实现废旧磷酸铁锂电池正极材料(LiFePO4)中锂(Li)选择性回收的问题,研究了“机械化学活化+浸出”联合工艺对Li选择性浸出的效果。对机械化学活化和浸出的工艺参数进行优化后,确定机械化学活化阶段的优化条件为:药剂用量(NH4)2SO4: LiFePO4摩尔比为1∶1、球料比为10∶1、湿磨时间为30 min。浸出阶段的优化条件为:浸出温度为80 ℃、H2O2体积分数为4%、固液比为50∶1 (g∶L),浸出时间为50 min。浸出反应的机理为,机械活化后,LiFePO4的晶格发生错位,颗粒粒径减小;浸出后LiFePO4中Fe的价态发生变化、Li与共磨剂络合。在优化的条件下,Li的浸出率为99.55%、Fe的浸出率为0,达到了选择性浸出Li的目的。本研究所开发的机械化学活化法可为高选择性回收废旧锂电池中的Li提供参考。  相似文献   
358.
分别选用无机絮凝剂聚合氯化铝(PAC)、硫酸铁〔Fe2(SO4)3〕,有机絮凝剂非离子聚丙烯酰胺(PAM)、阴离子聚丙烯酰胺(APAM)、阳离子聚丙烯酰胺(CPAM)对畜禽粪便沼液进行预处理,考察各物质投加量对悬浮物(SS)的去除效果。结果表明,CPAM对SS的去除效果最好,当沼液中的SS浓度为13 500 mg/L时,投加1.02 g/L(210 mL)的CPAM絮凝后,沼液中的SS浓度降为148 mg/L,SS去除率达98.9%。对絮凝后的水样(PO43--P浓度为35 mg/L左右)进行磷酸铵镁(MAP)结晶处理,结果发现,当Mg与P摩尔比为1:1时,pH为9.5时PO43--P去除率最高;而当Mg与P摩尔比为1.5~2:1时,pH为10.0时PO43--P去除率最高。扫描电镜(SEM)和X-射线衍射(XRD)分析表明,结晶产物为MAP。  相似文献   
359.
采用碱性氧化焙烧工艺回收含铬污泥中的铬,以浸出渣作为焙烧填料,最佳工艺条件为:含铬污泥加入量10g,浸出渣加入量8g,焙烧温度700℃,焙烧时间40min,n(Cr2O3):n(NaNO3):n(Na2CO3):n(NaOH)=1:2:3.5:10。在此条件下,碱性氧化焙烧工艺铬浸出率高达98%以上。  相似文献   
360.
有机溶剂回收技术的研究   总被引:3,自引:0,他引:3  
沈秋月  羌宁 《四川环境》2006,25(6):101-105
本文对有机溶剂的回收方法,如吸附法、吸收法、冷凝法和膜分离法等的研究进展与应用进行了综述。其中,吸附法在工业上的应用最为广泛,本文着重介绍了吸附法的工艺以及吸附剂的研究。而膜分离法作为最有发展前景的一种回收方法,主要问题为提高膜的通量和选择性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号