全文获取类型
收费全文 | 1096篇 |
免费 | 299篇 |
国内免费 | 648篇 |
专业分类
安全科学 | 73篇 |
废物处理 | 21篇 |
环保管理 | 131篇 |
综合类 | 1217篇 |
基础理论 | 262篇 |
污染及防治 | 164篇 |
评价与监测 | 83篇 |
社会与环境 | 60篇 |
灾害及防治 | 32篇 |
出版年
2024年 | 76篇 |
2023年 | 93篇 |
2022年 | 120篇 |
2021年 | 127篇 |
2020年 | 114篇 |
2019年 | 96篇 |
2018年 | 83篇 |
2017年 | 102篇 |
2016年 | 76篇 |
2015年 | 84篇 |
2014年 | 110篇 |
2013年 | 117篇 |
2012年 | 99篇 |
2011年 | 107篇 |
2010年 | 75篇 |
2009年 | 65篇 |
2008年 | 63篇 |
2007年 | 78篇 |
2006年 | 62篇 |
2005年 | 38篇 |
2004年 | 30篇 |
2003年 | 32篇 |
2002年 | 18篇 |
2001年 | 21篇 |
2000年 | 20篇 |
1999年 | 13篇 |
1998年 | 12篇 |
1997年 | 15篇 |
1996年 | 11篇 |
1995年 | 9篇 |
1994年 | 11篇 |
1993年 | 9篇 |
1992年 | 8篇 |
1991年 | 14篇 |
1990年 | 8篇 |
1989年 | 8篇 |
1988年 | 3篇 |
1987年 | 7篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1971年 | 2篇 |
1970年 | 1篇 |
排序方式: 共有2043条查询结果,搜索用时 15 毫秒
71.
新疆玛纳斯河流域农业水资源可利用潜力分析 总被引:2,自引:0,他引:2
结合新疆玛纳斯河流域水文水资源、种植结构和节水技术发展等资料,从开源、节流两方面对流域近期(至2010年)、中远期(2010-2030年)农业水资源极限潜力、可挖掘潜力进行了估算。结果表明,就目前水资源的利用水平和开发趋势,玛纳斯河流域未来农业水资源的主要利用途径是开源与节流相结合,以节流为主。全流域尚有的农业灌溉水资源极限潜力为10.75×108m3,近期农业水资源可挖掘潜力为2.13×108m3,其中开源增水潜力0.40×108m3,占18.8%,节流增水潜力1.73×108m3,占81.2%;中远期农业水资源可挖掘潜力5.33×108m3,其中开源增水潜力1.12×108m3,占21.0%,节流增水潜力4.21×108m3,占79.0%。该研究对区域制订节水灌溉规划及水资源系统优化配置具有重要参考价值。 相似文献
72.
结合潜在危害指数法和综合评分法筛选大武水源地地下水典型污染物。鉴于潜在危害指数法不考虑污染物的环境浓度,将潜在危害指数作为综合评分法的评价指标之一,同时引进污染物的检出频率、生物降解性、生物累积性、研究区是否有污染源检出、是否为环境激素、是否为美国环境保护署(EPA)优先有机污染物、是否为中国优先污染物、是否为持久性有机污染物等指标,计算不同污染物的综合得分,再通过聚类分析,筛选出典型污染物。研究结果表明,大武水源地地下水典型污染物为三氯甲烷、三氯乙烯、四氯乙烯、四氯化碳和苯。 相似文献
73.
为了探索丝状菌的致密途径、解决丝状菌污泥膨胀的难题,从丝状菌的自身特点及外部条件出发研究了其在污泥膨胀及致密过程中菌丝体的演替规律。研究发现,致密生长的大絮体对丝状菌的种类是有选择性的,那些丝体较弯曲、丝体强度较大、贮存能力强的菌丝体更利于形成聚集态生长。另外,研究表明,不同种类丝状菌的生长势和存贮能力不同,对底物的利用上亦存在着竞争关系。实验中存在的几个菌种对PHB颗粒的存贮能力由高到低依次为:Nostocoida limicola Ⅱ、Type 1851、Type 0701、Type 021N型菌体。 相似文献
74.
对苏州河截流区外河段(城郊段)东大盈河口—北新泾,按河道形态,支流与城镇分布等因素,沿程采集24个底泥柱样,测定其不同部位不同深度底泥中COD_(Cr)和NH_3-N含量,分析COD_(Cr)和NH_3-N在沿程和垂向上的分布特征及其成因。结果表明,底泥中污染沿程分布呈不规则波状起伏,东大盈河、蕴藻浜、盐铁塘、封浜、华漕港、新槎浦等支流口,浮泥层中COD_(Cr)含量达2万mg/kg,超过背景值2—3倍,支流口下游200m范围内均较高;黄渡小支流口、华漕港支流口浮泥层中NH_3-H含量达250mg/kg,超过背景值3倍。在垂向分布上,底泥柱样都出现峰值分布,在某些弯道及支流口出现递减分布。底泥耗氧污染程度主要与支流及其排污量有关,其次是弯道凸岸处污染物易于沉积富集。这为苏州河市郊段环境综合治理、底泥疏浚和处置提供了科学依据。 相似文献
75.
河北省钢铁工业主要大气污染物减排潜力分析 总被引:1,自引:0,他引:1
通过对河北省钢铁工业存在问题的分析,得出我省钢铁行业主要大气污染物为二氧化硫和粉尘.结合我省钢铁企业的实际情况,从工程技术、政策管理等方面提出相应治理措施,并对"十一五"期间我省钢铁行业二氧化硫和粉尘减排效益进行预测.预测结果显示:采用所建议的减排措施后,我省钢铁工业二氧化硫减排量对全省"十一五"减排计划的贡献率为81.4%;粉尘可减排60%. 相似文献
76.
There is a profound debate over how to assign greenhouse gas (GHG) responsibilities; therefore, we have decided to follow IPCC guidelines, as they offer the only standardized method. We have identified each type of greenhouse emission and its level of absorption. We have studied the province and its districts and municipalities. We have determined that the energy sector is that with the highest level of emissions, even if the per capita emissions of the Province of Siena are very low. This is caused by a very low level of industrialization and the presence of a local geothermal production of energy. In order to highlight this aspect, we have considered scenarios both with and without geothermal production. Our research was then focused on single districts (groups of homogenous municipalities) and municipalities, where we found great differences among the greenhouse emissions of the areas. We have constructed a map of the greenhouse emissions of the whole province. It has been interesting to note that there are 14 municipalities with net negative emissions, seven with low positive emissions, 12 with medium positive emissions and three with elevated positive emissions. These latter correspond to the main city and to two of the most industrialized municipalities. 相似文献
77.
Life cycle assessment of waste paper management: The importance of technology data and system boundaries in assessing recycling and incineration 总被引:2,自引:0,他引:2
Hanna Merrild Anders Damgaard Thomas H. Christensen 《Resources, Conservation and Recycling》2008,52(12):1391-1398
The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing on global warming potentials. The consequence of choosing a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate was studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved biomass, in order to study the importance of the system boundary choices. For recycling, the choice of virgin paper manufacturing data is most important, but the results show that also the impacts from the reprocessing technologies fluctuate greatly. For the overall results the choice of the technology data is of importance when comparing recycling including virgin paper substitution with incineration including energy substitution. Combining an environmentally high or low performing recycling technology with an environmentally high or low performing incineration technology can give quite different results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system to include substitution of fossil fuel energy by production of energy from the saved biomass associated with recycling will give a completely different result. In this case recycling is always more beneficial than incineration, thus increased recycling is desirable. Expanding the system to include forestry was shown to have a minor effect on the results. As assessments are often performed with a set choice of data and a set recycling rate, it is questionable how useful the results from this kind of LCA are for a policy maker. The high significance of the system boundary choices stresses the importance of scientific discussion on how to best address system analysis of recycling, for paper and other recyclable materials. 相似文献
78.
Knowledge of the factors that influence the diffusion of contaminants, such as the diffusivity and the connected porosity, is crucial to modeling the long-term fate and transport of contaminants in subsurface systems with small or negligible advective flow, such as in fractured crystalline rock. Fractured rock is naturally heterogeneous, and hence, understanding the diffusivity of a molecule through this material (or the formation factor of the medium) becomes a complex problem, with critical concerns about the scale of laboratory measurements and about the spatial variability of these measurements relative to the scale needed for fate and transport modeling. This study employed both electrical and tracer-based laboratory methods to investigate the effects of scale and pore system connectivity on the diffusivity for volcanic matrix rock derived from the study site, a former underground nuclear test site at Amchitka Island, Alaska. The results of these investigations indicate a relatively well-connected pore system with scale effects generally limited to approximately 6 cm lengths and well-correlated to observed heterogeneous features. An important conclusion resulting from this study, however, is that there is a potential for the estimated diffusivity to be misrepresented by an order of magnitude if multiple samples or longer sample lengths are not used. Given the relatively large number of measurements resulting from these investigations, an analysis of the probability density function (PDF) of the diffusivity was possible. The PDF of the diffusivity was shown to generally follow a normal distribution for individual geologic layers. However, when all of the geologic layers are considered together, the distribution of the subsurface as a whole was shown to follow a lognormal distribution due to the order of magnitude differences amongst the layers. An understanding of these distributions is essential for future stochastic modeling efforts. 相似文献
79.
Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar 总被引:11,自引:0,他引:11
Two Ultisols and one Oxisol from tropical regions of southern China were incubated with rice straw biochar to investigate the effect of biochar on their surface charge and Pb(II) adsorption using batch methods. The incorporation of biochar induced a remarkable increase in soil cation exchange capacity after 30 d of incubation. The incorporation of biochar significantly increased the adsorption of Pb(II) by these variable charge soils; the enhancement of adsorption of Pb(II) by these soils increased with the addition level of biochar. Adsorption of Pb(II) involved both electrostatic and non-electrostatic mechanisms; however, biochar mainly increased Pb(II) adsorption through the non-electrostatic mechanism via the formation of surface complexes between Pb2+ and functional groups on biochar. There was greater enhancement of biochar on the non-electrostatic adsorption of Pb(II) by the variable charge soils at relatively low pH. Therefore, the incorporation of biochar decreased the activity and availability of Pb(II) to plants through increased non-electrostatic adsorption of Pb(II) by acidic variable charge soils. 相似文献
80.
Impact of Bioaugmentation with a Consortium of Bacteria on the Remediation of Wastewater-Containing Hydrocarbons (5 pp) 总被引:1,自引:0,他引:1
Domde P Kapley A Purohit HJ 《Environmental science and pollution research international》2007,14(1):7-11
Goals, Scope and Background It has been observed that hydrocarbon treated wastewaters still contain high COD and a number of intermediates. This suggests
that the required catabolic gene pool for further degradation might be absent in the system or, that its titer value is not
significant enough. By providing the desired catabolic potential, the overall efficiency of the treatment system can be improved.
This study aims to demonstrate this concept by bioaugmentation of a lab-scale reactor treating refinery wastewater with a
consortium having the capacity to complement the alkB genotype to the available microbial population.
Methods Two reactors were set up using activated biomass collected from a refinery treatment plant and operated at a continuous mode
for a period of 8 weeks. The feed to both reactors was kept constant. Crude oil was spiked regularly. One reactor was bioaugmented
with a consortium previously described for crude oil spill remediation. The efficiency of the bioaugmented reactor was demonstrated
by reduced COD. The changes in the microbial population over a period of time were analyzed by RAPD. Catabolic activity of
the biomass in both reactors was monitored by PCR. The presence of the catabolic loci was confirmed by Southern Hybridization.
Results and Discussion 52.2% removal of COD was observed in the bioaugmented reactor while only 15.1% reduction of COD was observed in the reactor
without bioaugmentation. The change in microbial population can be seen from the 4th week, which also corresponds to improved
catabolic activity. The presence of the bedA locus was seen in all samples, which indicates the presence of aromatic degraders,
but the appearance of the alkB locus, from the 6th week onwards, which was observed only in the samples from the bioaugmented
reactor. The results suggest that the gene pool of the bioaugmented reactor has catabolic loci that can degrade accumulated
intermediates, thus improving the efficiency of the system.
Conclusions In this study, improvement of efficiency of bioremediation was demonstrated by addition of catabolic loci that are responsible
for degradation. Bioaugmentation was carried out in biomass that was collected from an ETP (effluent treatment plant) treating
hydrocarbon containing wastewater to study the strategies for improvement of the treatment system. Biostimulation, only marginally
improved the efficiency, when compared to bioaugmentation. The improved efficiency was demonstrated by COD removal. The presence
of the alkB locus suggests the importance of a catabolic gene pool that acts on accumulated intermediates. It is well documented
that straight chain aliphatics and intermediates of aromatic compounds after ring cleavage, accumulate in refinery wastewater
systems, thereby hindering further degradation of the wastewater. Supplementation of a catabolic gene pool that treats the
lower pathway compounds and alkanes will improve the overall efficiency. In this study, results suggest that the alkB locus
can also be used to monitor the degradative mode of the activated biomass.
Recommendations and Perspective . Pollution from petroleum and petroleum products around the globe are known to have grave consequences on the environment.
Bioremediation, using activated sludge, is one option for the treatment of such wastes. Effluent treatment plants are usually
unable to completely degrade the wastewater being treated in the biological unit (the aerator chambers). The efficiency of
degradation can be improved by biostimulation and bioaugmentation. This study demonstrates the improved efficiency of a treatment
system for wastewater containing hydrocarbons by bioaugmentation of a consortium that supports degradation. Further experiments
on a pilot scale are recommended to assess the use of bioaugmentation on a large scale. The use of molecular tools, like DNA
probes for alkB, to monitor the system also needs to be explored. 相似文献