首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   5篇
废物处理   2篇
综合类   15篇
基础理论   4篇
污染及防治   10篇
社会与环境   1篇
  2022年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2009年   5篇
  2008年   3篇
  2006年   4篇
  2005年   4篇
  2003年   3篇
  1998年   1篇
  1995年   1篇
排序方式: 共有32条查询结果,搜索用时 409 毫秒
21.
白腐菌对焦化废水中喹啉的降解及机理研究   总被引:9,自引:0,他引:9  
选用白腐菌BP降解喹啉,研究了白腐菌在不同培养基中对喹啉的降解过程和机理,以及喹啉的降解与白腐菌漆酶活力、生物量比增长速率、培养基pH值的关系。结果显示秸秆滤出液培养基中生长的白腐菌对喹啉具有最高的去除率89%;喹啉的相对去除率与白腐菌漆酶活力、生物量比增长速率具有较好的相关性;白腐菌BP最适pH为6~7;2-羟基喹啉是喹啉降解过程中首先出现的中间产物。  相似文献   
22.
沈阳市大气细菌与真菌粒子的关系   总被引:3,自引:1,他引:3  
用ANDERSEN生物粒子采样器对沈阳市大气细菌和真菌粒子的密度、密度分布、粒度分布及两者关系进行了观察和。结果表明,沈阳市大气年平均密度细菌粒子为7228个/m^3,真菌粒子为1797个/m^3,细菌为真菌的4.1倍。细菌粒子密度和粒度均呈正偏态分布,真菌粒子密度和粒度均呈对数正态分布。〈8.2μm的可吸入粒子,细菌为4326个/m^3,占其总数的61.4%;真菌为1583个/m^3,占其总数的  相似文献   
23.
We examined the long-term effects of a single application of potassium (K) fertilizer (100 kg K ha−1) in 1992 on 137Cs uptake in a forest ecosystem in central Sweden. 137Cs activity concentrations were determined in three low-growing perennial shrubs, heather (Calluna vulgaris), lingonberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus), and in four wild fungal species (Cortinarius semisanguineus, Lactarius rufus, Rozites caperata and Suillus variegatus). Uptake of 137Cs by plants and fungi growing on K-fertilized plots 17 years after application of the K fertilizer was significantly lower than in corresponding species growing in a non-fertilized control area. The 137Cs activity concentration was 21-58% lower in fungal sporocarps and 40-61% lower in plants in the K-fertilized area compared with the control. Over the study period, this decrease in 137Cs activity concentration was more consistent in plants than in fungi, although the effect was statistically significant and strongly pronounced in all species. The effect of K fertilization in reducing 137Cs activity concentration in fungi and plants decreased over time but was still significant in 2009, 17 years after fertilization. This suggests that application of K fertilizer to forests is an appropriate and effective long-term measure to decrease radiocaesium accumulation in plants and fungi.  相似文献   
24.
Hydrocarbon-utilizing microorganisms naturally associated with sawdust   总被引:1,自引:0,他引:1  
Ali N  Eliyas M  Al-Sarawi H  Radwan SS 《Chemosphere》2011,83(9):1268-1272
Sawdust, one of the materials used as sorbent for removing spilled oil from polluted environments was naturally colonized by hydrocarbon-utilizing fungi, 1 × 105-2 × 105 colony forming units (CFU) g−1, depending on the hydrocarbon substrate. This sorbent was initially free of hydrocarbon-utilizing bacteria. Incubating wet sawdust at 30 °C resulted in gradually increasing the fungal counts to reach after 6 months between 5 × 106 and 7 × 106 CFU g−1, and the appearance of hydrocarbon-utilizing bacteria in numbers between 8 × 104 and 3 × 105 cells g−1. The fungi belonged to the genera Candida (32% of the total), Penicillium (21%), Aspergillus (15%), Rhizopus (12%), Cladosporium (9%), Mucor (7%) and Fusarium (4%). Based on their 16S rRNA gene sequences the bacteria were affiliated to Actinobacterium sp. (38%), Micrococcus luteus (30%), Rhodococcus erythropolis, (19%) and Rhodococcus opacus (13%). Individual pure fungal and bacterial isolates grew on a wide range of individual pure aliphatic (n-alkanes with chain lengths between C9 and C40) and aromatic (benzene, biphenyl, anthracene, naphthalene and phenanthrene) hydrocarbons as sole sources of carbon and energy. Quantitative determinations revealed that all fungal and bacterial isolates could consume considerable proportions of crude oil, phenanthrene (an aromatic hydrocarbon) and n-hexadecane (an aliphatic hydrocarbon) in batch cultures. It was concluded that when sawdust is used as a sorbent, the associated microorganisms probably contribute to the bioremediation of oil and hydrocarbon pollutants in the environment.  相似文献   
25.
Fungi can effectively accumulate various metallic elements, metalloids and non-metals in fruiting bodies. This study provides information on the accumulation of Ag, As, Ba, Cd, Co, Cs, Cu, Cr, Li, Mn, Ni, Pb, Rb, Sr, V, Tl, U and Zn in the edible mushroom Sarcodon imbricatus (L.) P. Karst. using the technique of inductively coupled plasma – mass spectrometry with a dynamic reaction cell mode. Mushrooms were foraged from four regions in Poland. Baseline concentrations of minerals, expressed in mg kg?1 dry biomass (db), were in the composite samples of caps in the range: for Ag (0.27–0.29), As (1.0–1.9), Ba (0.31–0.45), Cd (4.5–6.3), Co (0.23–1.9), Cu (28–35), Cr (0.19–0.29), Cs (20–38), Li (0.013–0.020), Mn (5.9–8.8), Ni (0.81–1.4), Pb (0.94–1.6), Rb (490–700), Sr (0.14–0.19), Tl (0.058–0.11), U (0.002–0.002), V (0.044–0.054) and Zn (140–160). Concentration levels of Ag, As, Cd, Cs, Pb and Zn were higher in caps than in stipes of S. imbricatus, whereas for other elements the distribution between caps and stipes was nearly equal or for some differed depending on the location. Certainly, the content of toxic Cd in S. imbricatus was elevated (0.45–0.63 mg kg?1 in fresh caps) and therefore eating this mushroom could increase exposure to Cd. In addition, the content of toxic As in S. imbricatus was elevated.  相似文献   
26.

This investigation was undertaken to survey the fungal and mycotoxin contamination of South African wheat ranging from that growing in the field to processed wheat products. Samples of wheat were taken from various growing areas in South Africa and screened for fungi and mycotoxins, using a range of methodologies, including chromatography, immunoaffinity/fluorimetry, and cytotoxicity testing. Similar samples were taken from supermarkets and retail outlets in South Africa and analyzed in a similar manner. The result showed that a range of fungi and mycotoxins could be detected in wheat in all these sample types. The major fungal contaminants were Fusarium spp. and their attendant mycotoxins, in particular deoxynivalenol, which is in keeping with the observations made in the rest of the world. An interesting observation was that samples of wheat taken from the field with heavy Fusarium contamination were contaminated with fumonisin B1, which is not normally associated with this crop. Of more concern were the low but persistent levels of mycotoxins and fungi in wheat-based products sold directly to the public.  相似文献   
27.
Fruiting bodies from the Agaricus genus have been found to contain non-toxic arsenobetaine (AB) as a major compound. It is unknown whether AB is formed during the vegetative or reproductive life stages of the fungus, or by the surrounding microbial community, but AB''s structural similarity to glycine betaine has led to the hypothesis that AB may be adventitiously accumulated as an osmolyte. To investigate the potential formation of AB during the reproductive life stage of Agaricus species, growth substrate and fungi were collected during the commercial growth of Agaricus bisporus and analyzed for arsenic speciation using HPLC-ICP-MS. AB was found to be the major arsenic compound in the fungus at the earliest growth stage of fruiting (the primordium). The growth substrate mainly contained arsenate (As(V)). The distribution of arsenic in an A. bisporus primordium grown on As(V) treated substrate, and in a mature Agaricus campestris fruiting body collected from arsenic contaminated mine tailings, was mapped using two dimensional XAS imaging. The primordium and stalk of the mature fruiting body were both found to be growing around pockets of substrate material containing higher As concentrations, and AB was found exclusively in the fungal tissues. In the mature A. campestris the highest proportion of AB was found in the cap, supporting the AB as an osmolyte hypothesis. The results have allowed us to pinpoint the fungus life stage at which AB formation takes place, namely reproduction, which provides a direction for further research.  相似文献   
28.
Systematic screening of 45 soil fungi for degradation polyhydroxyalkanoic acids (PHAs) has led to the selection of 6 potent Aspergillus isolates belonging to A. flavus, A. oryzae, A. parasiticus, and A. racemosus. Degradation of PHAs as determined by tube assay method revealed that these Aspergillus spp. were more efficient in degrading poly(3-hydroxybutyrate) [P(3HB)] compared to copolymer of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (P3HB-co-16% 3HV). Moreover, the extent of degradation in mineral base medium was much better than those in complex organic medium. For all the Aspergillus spp. tested, maximum degradation was recorded at a temperature of 37°C with significant inhibition of growth. The optimum pH range for degradation was 6.5–7.0 with degradation being maximum at pH 6.8. The extent of polymer degradation increased with increase in substrate concentration, the optimum concentration for most of the cultures being 0.4% and 0.2% (w/v) for P(3HB) and P(3HB-co-16%3HV) respectively. Supplementation of the degradation medium with additional carbon sources exerted significant inhibitory effect on both P(3HB) and P(3HB-co-16%3HV) degradation.  相似文献   
29.
To examine bioconcentration factors (BCFs) of mercury by Parasol Mushroom (Macrolepiota procera) roughly similarly sized (a cap diameter) fruiting bodies of this fungus and underlying soil (0–10 cm) samples were collected at 15 sites in Poland between 1995 and 2003. The total mercury content of the individual caps and stipes of Parasol Mushroom ranged from 0.05 to 22 mg Hg/kg dry matter (d.m.) and from 0.05 to 20 mg Hg/kg d.m., while the means were from 1.1 to 8.4 mg Hg/kg d.m. and from 0.83 to 6.8 mg Hg/kg d.m., respectively. The caps generally contained higher concentrations of mercury when compared to stipes, and the means of the cap to stipe mercury concentration quotient ranged from 1.3 to 4.6. The range of mercury concentration in topsoil samples collected at the sites where the fruiting bodies were collected was from 0.01 to 0.54 mg/g d.m. (means ranged from 0.022 to 0.36 mg/g d.m.). The BCFs factors for total mercury varied from 0.52 to 470 for individual caps and 0.52 to 360 for stipes, while average values, depending on the site, were from 16 to 220 and from 7.6 to 130 for caps and stipes, respectively.  相似文献   
30.
Ban-nai T  Muramatsu Y  Amachi S 《Chemosphere》2006,65(11):2216-2222
Five strains of basidiomycetes (Lentinula edodes, Coprinus phlyctidosporus, Hebeloma vinosophyllum, Pleurotus ostreatus and Agaricus bisporus), one strain of ascomycete (Hormoconis resinae) and six strains of imperfect fungi (Penicillium chrysogenum, Penicillium roquefortii, Cladosporium cladosporioides, Alternaria alternata, Aspergillus niger and Aspergillus oryzae) were cultured in a liquid medium containing a radioactive iodine tracer (125I), and were tested for their abilities to volatilize or accumulate iodine. Of the fungal strains tested, 11 strains volatilized a considerable amount of iodine, with L. edodes showing the highest volatilization rate of 3.4%. The volatile organic iodine species emitted from imperfect fungi cultures was identified as methyl iodide (CH3I). In contrast, six fungal strains in 12 strains accumulated a considerable amount of iodine from the medium with concentration factors of more than 1.0. Among these, Alt. alternata and Cl. cladosporioides accumulated more than 40% of the iodine in their hyphae, and showed high concentration factors of 22 and 18, respectively. These results suggest that filamentous fungi have a potential to influence the mobility and speciation of iodine by volatilization and accumulation. Considering their great biomass in soils, filamentous fungi may contribute to the global circulation of stable iodine and also the long-lived radioiodine, 129I (half-life: 1.6 × 107 years), released from nuclear facilities into the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号