首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   51篇
  国内免费   84篇
安全科学   43篇
废物处理   5篇
环保管理   46篇
综合类   197篇
基础理论   22篇
污染及防治   30篇
评价与监测   13篇
社会与环境   14篇
灾害及防治   2篇
  2024年   4篇
  2023年   4篇
  2022年   5篇
  2021年   12篇
  2020年   17篇
  2019年   19篇
  2018年   24篇
  2017年   23篇
  2016年   28篇
  2015年   17篇
  2014年   24篇
  2013年   22篇
  2012年   22篇
  2011年   12篇
  2010年   13篇
  2009年   12篇
  2008年   9篇
  2007年   17篇
  2006年   7篇
  2005年   14篇
  2004年   9篇
  2003年   10篇
  2002年   5篇
  2001年   13篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
排序方式: 共有372条查询结果,搜索用时 203 毫秒
21.
A feasibility study on utilization of non edible oil of Scleropyrum pentandrum was carried out to see its potential as a new source for biodiesel production. Nonedible oil seeds of Scleropyrum pentandrum have oil content of 55–60%. Transesterification of freshly extracted oil in the presence of anhydrous sodium hydroxide at a concentration 1% (w/v oil) and methanol-oil ratio of 40% (v/v oil) yields 90.8% methyl esters under conventional heating. Month old oil requires sulfuric acid pretreatment (esterification) before transesterification. The transesterified oil has a density 889–893 kg/m3; kinematic viscosity of 4.21–5.7 mm2/s; cetane index 46.03; pour point of ?15°C and gross calorific value of 40.135 MJ/kg and oxidative stability of 2.35 hours. The properties are well within the Indian, European and American standard limits recommended for biodiesel except the oxidation stability, which can be improved by adding antioxidant additives. The engine performance studies of B10 and B20 blends of Scleropyrum pentandrum biodiesel (SP biodiesel) with statistical inference confirmed that it can be used as a fuel in CI engines without any engine modifications. The engine exhaust emission analysis showed that the emission of hydrocarbons can be minimized by at least 15–20%, CO emission by 15%, smoke opacity by 10–12% and moderately lesser CO2 and NOx emissions.  相似文献   
22.
闫妍  孟忠伟  干平  陈鹏 《环境工程学报》2014,8(9):3865-3870
柴油机碳烟颗粒(PM)中可溶性有机组分(SOF)含量是其重要的特性参数,而真空干燥法可方便、高效、可靠地分析颗粒SOF含量,对其干燥条件的探索具有重要的研究意义和应用价值。首先采用模拟的柴油机颗粒,分析不同的干燥条件对模拟SOF(柴油、润滑油)挥发率的影响规律,得出模拟的SOF分析的最佳干燥条件;在此基础上,探索了真实柴油机颗粒SOF分析的最佳干燥条件为:干燥温度220℃、干燥时间3 h、真空度98 kPa,得知SOF组分干燥的难易程度介于柴油和润滑油之间;同时,根据此干燥条件,分析了排气管末端采集的真实碳烟颗粒的SOF含量特性。  相似文献   
23.
柴油发动机尾气排放中含有比汽油发动机更多的颗粒污染物。文章叙述了尾气净化装置反应原理,触媒及化学稳定性,柴油氧化催化剂和颗粒催化过滤器优点。通过外部加装尾气净化装置,解决了尾气污染问题,具有较好的发展前景、较强的实用性和可操作性。  相似文献   
24.
Renewable and alternative fuels have numerous advantages compared with fossil fuels as they are renewable and biodegradable and provide food and energy security and foreign exchange savings besides addressing environmental concerns and socio-economic issues (Yaliwal et al. 2013. International Journal of Sustainable Engineering, doi:10.1080/19397038.2013.801530. Zhu et al. 2011a, Applied Thermal Engineering 31 (14–15): 2271–2278; Zhu et al. 2011b, Fuel 90: 1743-1750; Banapurmath, Tewari, and Hosmath 2008, Renewable Energy 33: 2007-2018; Banapurmath 2009, “Performance, Combustion and Emission Characteristics of a Single Cylinder Direct Injection CI Engine Operated on Dual Fuel Mode Using Honge Oil and Producer Gas.” PhD thesis, 1–195; Banapurmath et al. 2011, Waste and Biomass Valorization 2: 1–11). In this context, the main objective of the present work is to study methods of biofuel production such as Honge oil methyl ester (HOME) using a conventional transesterification process and bioethanol from the Calliandra calothyrsus shrub using a new pretreatment method known as hydrothermal explosion. Further, experimental investigations were carried out on a single-cylinder, four-stroke, direct-injection stationary diesel engine operating in a dual-fuel mode using HOME, bioethanol and producer gas combinations to determine its performance, combustion and emission characteristics. The performance of the dual-fuel engine was analyzed at optimized engine conditions. HOME-Bioethanol (BE) blends such as HOME+ 5% bioethanol (BE5), HOME+ 10% bioethanol (BE10) and HOME+ 15% bioethanol (BE15) were prepared by adding bioethanol to HOME (on volume basis) in different proportions ranging from 5 to 15% with an increment of 5%. In this present work, the effect of different BE blends on the performance of producer gas fuelled dual fuel engine was studied. Experimental investigation on dual fuel engine using BE5-Producer gas operation resulted in up to 4–9% increased brake thermal efficiency with decreased hydrocarbon (HC), carbon monoxide (CO) and marginally increased nitric oxide (NOx) emission levels compared to HOME-Producer gas, BE10-producer gas and BE15-producer gas mode of operation. However, it was observed that, the overall performance of BE-producer gas operation was found to be lower compared to diesel-producer gas operation.  相似文献   
25.
The diminishing resources and continuously increasing cost of petroleum in association with their alarming pollution levels from diesel engines has led to an interest in finding alternative fuels to diesel. Emission control and engine efficiency are two of the most important parameters in current engine design. The impending introduction of emission standards such as Euro IV and Euro V has forced research towards developing new technologies for combating engine emissions. This paper examines the effects of compression ratio, swirl augmentation techniques and ethanol addition on the combustion of compressed natural gas (CNG) blended with Honge oil methyl esters (HOME) in a dual fuel engine. The present results show that the combustion of HOME and 15% ethanol blend with CNG induction in a dual-fuel engine operated in optimized parameters at an injection timing of 27° Before Top Dead Centre and a compression ratio of 17.5 resulted in acceptable combustion emissions and improved brake thermal efficiencies. The implementation of swirl augmentation techniques increased brake thermal efficiencies (BTEs) and considerably reduced combustion emissions such as smoke, HC, CO and NOx. The addition of ethanol also increased BTEs. However, at more than 15% of ethanol in HOME, NOx emissions increased dramatically.  相似文献   
26.
ABSTRACT

This article aims to study the influence of the addition of graphene oxide nanoparticles (GO) to diesel/higher alcohols blends on the combustion, emission, and exergy parameters of a CI engine under various engine loads. The higher alcohols mainly n-butanol, n-heptanol, and n-octanol are blended with diesel at a volume fraction of 50%. Then, the 25 and 50 mg/L concentrations of GO are dispersed into diesel/higher alcohols blends using an ultrasonicator. The GO structures are examined using TEM, TGA, XRD and FTIR. The findings show that there is a reduction in pmax. and HRR when adding higher alcohols with diesel fuel. Regarding engine emission, there is a significant improvement in emissions formation with adding higher alcohols. The addition of GO into diesel/higher alcohols blends improves the brake thermal efficiency by 15%. Moreover, the pmax. and HRR are both enhanced by 4%. The CO, UHC and smoke formation are reduced considerably by 40%, 50 and 20%, respectively, while NOx level is increased by 30% with adding GO. Finally, adding high percentages of n-butanol, n-heptanol, and n-octanol with diesel fuel with the presence of GO has the potential to achieve ultra-low CO, UHC, and smoke formation meanwhile keeping high thermal efficiency level.  相似文献   
27.
为了满足国际海事组织对船舶CO2排放的要求,建立了一种针对船舶尾气CO2的循环吸收系统,利用NaOH溶液吸收CO2.NaOH溶液完成第一步吸收反应后在第二步反应中被还原,从而可以循环利用.分析了初始反应温度、NaOH浓度及溶液中的Na2CO3对CO2吸收率的影响,并计算了循环反应中NaOH的再生率和CaO的过量系数.结果表明,CaO过量系数为1.2时对CO2固化效果最佳,此时NaOH溶液再生率达79.31%.研究表明,NaOH溶液吸收船舶尾气中CO2的循环系统效率高、成本低.  相似文献   
28.
Diesel engines are being increasingly adopted by many car manufacturers today, yet no exact mathematical diesel engine model exists due to its highly nonlinear nature. In the current literature, black-box identification has been widely used for diesel engine modelling and many artificial neural network (ANN) based models have been developed. However, ANN has many drawbacks such as multiple local minima, user burden on selection of optimal network structure, large training data size, and over-fitting risk. To overcome these drawbacks, this article proposes to apply an emerging machine learning technique, relevance vector machine (RVM), to model and predict the diesel engine performance. The property of global optimal solution of RVM allows the model to be trained using only a few experimental data sets. In this study, the inputs of the model are engine speed, load, and cooling water temperature, while the output parameters are the brake-specific fuel consumption and the amount of exhaust emissions like nitrogen oxides and carbon dioxide. Experimental results show that the model accuracy is satisfactory even the training data is scarce. Moreover, the model accuracy is compared with that using typical ANN. Evaluation results also show that RVM is superior to typical ANN approach.  相似文献   
29.
正The power and efficiency of gasoline engines is often improved through the use of fuel with high octane ratings.The octane rating of fuel could be further increased with oxygenate additives such as alcohols and ethers, with methyl tert-butyl ether (MTBE) being one of the most common gasoline additives. The Agency for Toxic Substances and Disease  相似文献   
30.
This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) × 108 cm-3. The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 × 106 cm-3 and 2.7 × 107 cm-3 under decelerating and idling operations and as high as 5.0 × 108 cm-3 under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号