首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   29篇
  国内免费   1篇
安全科学   13篇
环保管理   1篇
综合类   51篇
污染及防治   2篇
  2024年   7篇
  2023年   3篇
  2022年   14篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   8篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1994年   1篇
排序方式: 共有67条查询结果,搜索用时 0 毫秒
31.
环境温度对某固体推进剂贮存寿命影响研究   总被引:1,自引:3,他引:1  
为了分析环境温度对固体推进剂贮存寿命的影响程度,根据某固体推进剂加速老化试验结果,采用传统阿伦尼乌斯法、线性活化能法、整体预测法和两步回归法,预测了该推进剂在20℃和25℃下的贮存寿命。通过对比分析,认为不同寿命预估方法的预测结果不尽相同,但推进剂贮存环境温度的小范围改变对贮存寿命的影响是显著的。  相似文献   
32.
高能推进剂老化对发动机内弹道性能的影响研究   总被引:3,自引:1,他引:3  
对某配方NEPE高能固体推进剂进行了加速贮存试验,分析了推进剂在长期贮存后其密度、燃速的变化规律,开展了发动机内弹道测试和内弹道参数影响定量分析研究。针对某翼柱型装药固体发动机,分析了长期贮存后其内弹道性能的变化规律。结果表明,燃速缓慢下降是影响高能推进剂发动机内弹道性能变化的主要因素。  相似文献   
33.
目的建立一种HTPB推进剂自然环境加速老化试验方法。方法研发一套户外热循环自然环境加速试验装置,可以模拟和强化太阳辐射对HTPB推进剂的热效应和昼夜温差冲击效应,并保持环境温度日夜温差循环、季节温差循环的特点。利用该装置,在海南万宁试验站户外暴露场开展HTPB推进剂自然环境加速老化试验及其验证试验,设定试验最高温度不超过70℃,并同期开展HTPB推进剂库房贮存试验。从模拟性、加速性、重现性评价自然环境加速老化试验方法的可信度。结果随着老化时间的延长,最大拉伸强度保留率波动下降,可作为HTPB推进剂敏感力学参数。与该推进剂在库房贮存不同时间的最大拉伸强度保留率相比,在置信度为99%,两种试验方法的Spearman秩相关系数为0.93时,自然环境加速老化试验方法对于库房贮存试验方法的加速倍率为5倍,自然环境加速老化试验重现性良好。结论建立了一种适用于HTPB推进剂的简单易行、模拟性强、加速倍率高的自然环境加速老化试验方法,能再现HTPB推进剂在实际库房贮存的力学性能变化规律。  相似文献   
34.
目的 获得某三基发射药老化后性能的退化规律,确定其失效模式,预估贮存及使用寿命.方法 根据某三基发射药实际使用环境及方式,采用温度-湿度双应力加速老化试验,模拟装药条件,获得老化样品.以安定剂含量、抗压强度、燃烧性能和机械感度为监测指标,对老化后样品进行测试,探究其性能变化规律,明确失效模式.通过Berthelot方程...  相似文献   
35.
利用轻气炮产生飞片直接撞击改性双基推进剂及丁羟复合团体推进剂。通过对不同加载条件下回收试件的微观观察,得到不同损伤程度的推进剂,利用锰铜压阻计研究损伤推进剂及未损伤推进剂的冲击起爆过程。结果表明,对已损伤的推进剂.其冲击波作用危险性大大增加。  相似文献   
36.
为了定性和定量的描述药柱燃面、密度、燃速等因素对固体火箭发动机(SRM)内弹道性能的影响,在HTPB复合固体推进剂老化研究和SRM内弹道性能预估研究的基础上,分析了HTPB推进剂因贮存老化引起的SRM内弹道性能偏差,建立了性能偏差计算模型。结果表明,老化引起的药柱燃面、密度、燃速变化以及侵蚀燃烧引起的喷喉烧蚀是SRM贮存过程中影响内弹道性能偏差的直接因素,老化引起它们微小的波动都会引起发动机内弹道性能较大的偏离。在发动机寿命预估和进行可靠性分析时必须考虑老化对内弹道性能的影响。  相似文献   
37.
通过驯化富集培养,从长期受发射药污染的土壤中分离筛选出能以发射药为唯一碳源并具有较高降解能力的微生物混合菌群,混合菌群对发射药样品COD去除率最高可达75.6%。经进一步分离纯化,获得了5株优势菌。实验表明混合菌群的降解能力优于各单一菌种,应以混合菌群为目标菌种。混合菌群最佳降解温度为30~35℃,最佳pH值为7.0。...  相似文献   
38.
目的 掌握HTPB推进剂老化过程中,温度和湿度对其力学性能的影响及贡献程度.方法 对HTPB推进剂进行不同湿热条件下的加速老化试验,并测量不同老化时间推进剂的质量损失分数和力学性能,结合推进剂在温度和湿度下的作用机理,对质量损失分数随老化时间的变化规律进行分析,以最大拉伸强度作为性能指标,对HTPB推进剂湿热老化过程进行湿热双因素方差分析.结果 湿度对HTPB推进剂质量损失分数的影响起主导作用,在75%~85%有一个湿度拐点值,大于或小于这个拐点值,推进剂遵循不同的质量损失分数变化规律.温度和湿度对推进剂最大抗拉强度方差分析的F值均大于其临界值,影响显著.相比而言,湿度的影响更加显著,整个老化过程中,温度和湿度的影响作用表现出先增加、后下降的趋势.温湿交互作用在试验前期和后期对推进剂的影响不显著,而在试验中期较为显著,同样呈现出先增大、后减小的规律.结论 湿度对推进剂最大拉伸强度影响的贡献率最大,温度次之,交互作用最小.从时间轴上看,湿度的贡献率表现为单调递增趋势,温度为单调递减趋势,交互作用呈现抛物线趋势.  相似文献   
39.
目的快速、准确地评估固体推进剂贮存寿命。方法在4个不同升温速率下获得固体推进剂的热流信号,根据等转化率原理,利用AKTS热反应动力学软件获得相应的动力学参数及动力学模型,同时开展60℃热老化试验,选用适当的数学模型评价固体推进剂贮存寿命。结果固体推进剂在25℃的贮存寿命为16年。结论利用等转化率原理可准确获得固体推进剂反应速率常数,再利用单个温度点加速老化试验能快速得到固体推进剂的贮存寿命。  相似文献   
40.
丁羟推进剂库房贮存与加速老化规律研究   总被引:2,自引:2,他引:0  
采用库房贮存与加速试验的方法,研究了丁羟推进剂在库房贮存与加速老化环境下的规律,得到了丁羟推进剂加速老化与库房贮存的试验数据.利用秩相关系数检验方法对2组试验数据进行了相关性分析,并分析了推进剂老化失效模式和贮存环境对推进剂贮存寿命的影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号