首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
  国内免费   29篇
安全科学   10篇
环保管理   4篇
综合类   37篇
基础理论   16篇
污染及防治   18篇
评价与监测   1篇
  2023年   5篇
  2022年   6篇
  2021年   7篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   8篇
  2015年   9篇
  2013年   2篇
  2012年   5篇
  2011年   6篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
61.
• Microalgae oil application for biodiesel synthesis is discussed. • Catalytic effectiveness of ferment preparations and chemical catalyst is disputed. • Application of heterogeneous catalysts for biodiesel synthesis is reviewed. • Possibilities of catalyst regeneration is shown. Recently, there is a growing interest in the use of microalga in various fields. Microalgae have properties such as rapid reproduction and high biomass accumulation, and under certain conditions, some are able to accumulate a large amount of oil. However, microalgae oil often contains more free fatty acids than the vegetable oil and is therefore unsuitable for biodiesel synthesis using alkaline catalysts. For this reason, some authors suggest the application of heterogeneous catalysis. A particular interest in the use of immobilized enzymes has developed. Other solid substances can also be used as heterogeneous catalysts are usually metal oxides, carbonates or zeolites. The use of these catalysts results in simpler biodiesel synthesis, especially purification processes, a cleaner end product and a less polluted environment. The molar ratio of alcohol to oil is lower during enzymatic transesterification, and more than 90% ester yield is obtained using a molar ratio of alcohol to oil of 3:1 to 4.5:1. The alcohols do not have a negative effect on the effectiveness of chemical catalysts, so it is possible to use alcohols in molar ratio from 4:1 to 12:1. The optimal temperature of enzymatic process is 30℃‒50℃. An ester yield of more than 95% was obtained in 12‒48 h. Using chemical catalysts, greater than a 95% yield of esters was obtained at higher temperatures in a shorter time. Material costs of enzymatic catalysis can be reduced by reusing the catalysts directly or after regeneration.  相似文献   
62.
63.
Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong remediation operations. Laboratory experiments and numerical studies have been conducted to investigate the use of a shear-thinning polymer (Xanthan gum) to improve access to low-permeability zones in heterogeneous systems. The chemicals sodium mono-phosphate and the surfactant MA-80 were used as the remedial amendments. The impact of polymer concentration, fluid injection rate, and permeability contrast in the heterogeneous systems has been studied in a series of eleven two-dimensional flow cell experiments. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear-thinning effects. The experimental and simulation results clearly show that using the polymer leads to an enhanced delivery of remedial amendments to lower-permeability zones and an increased sweeping efficiency. An added benefit of using the polymer is the stabilization of the displacing front when density differences exist between displaced and displacing fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior well and might be used to predict subsurface remediation performance when a shear-thinning fluid is used to remediate a heterogeneous system at larger scales.  相似文献   
64.
Liu C  Yang B  Gan J  Zhang Y  Liang M  Shu X  Shu J 《Chemosphere》2012,87(5):470-476
Organophosphorus pesticides (OPPs) emit into the atmosphere in both gas and particulate phases via spray drift from treatments and post-application emission, but most of their degradations in the atmosphere are not well known. In this study, the heterogeneous reactions of nitrate (NO3) radicals with three typical OPPs (parathion, malathion, and fenthion) absorbed on azelaic acid particles are investigated using an online vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The reaction products observed with the VUV-ATOFMS are identified on the basis of GC/MS analysis of the products in the reaction between NO3 radicals and the coating of the pesticide. Paraoxon is identified as the only product of parathion; malaoxon and bis(1,2-bis-ethoxycarbonylethyl)disulfide as the products of malathion; fenoxon, fenoxon sulfoxide, fenthion sulfoxide, fenoxon sulfone, and fenthion sulfone as the products of fenthion. The degradation rates of parathion, malathion, and fenthion under the experimental conditions are 5.5 × 10−3, 5.6 × 10−2, and 3.3 × 10−2 s−1, respectively. The pathways of the heterogeneous reactions between the three OPPs and NO3 radicals are proposed. The experimental results reveal the possible transformations of these OPPs through the oxidation of NO3 radicals in the atmosphere.  相似文献   
65.
A magnetite-loaded mesocellular carbonaceous material, Fe3O4/MSU-F-C, exhibited superior activity as both a Fenton catalyst and an adsorbent for removal of phenol and arsenic, and strong magnetic property rendering it separable by simply applying magnetic field. In the presence of hydrogen peroxide, the catalytic process by Fe3O4/MSU-F-C completely oxidized phenol and As(III) under the conditions where commercial iron oxides showed negligible effects. Notably, the decomposition of H2O2 by Fe3O4/MSU-F-C was not faster than those by commercial iron oxides, indicating that hydroxyl radical produced via the catalytic process by Fe3O4/MSU-F-C was used more efficiently for the oxidation of target contaminants compared to the other iron oxides. The homogeneous Fenton reaction by the dissolved iron species eluted from Fe3O4/MSU-F-C was insignificant. At relatively high doses of Fe3O4/MSU-F-C, total concentration of arsenic decreased to a significant extent due to the adsorption of arsenic on the catalyst surface. The removal of arsenic by adsorption was found to proceed via preoxidation of As(III) into As(V) and the subsequent adsorption of As(V) onto the catalyst.  相似文献   
66.
● Terminal carboxylate group activation is PFOA degradation’s rate-limiting step. ● Bi3O(OH)(PO4)2 with surface frustrated Lewis pairs (SFLPs) efficiently degrade PFOA. ● Photo-induced Lewis acidic sites and proximal surface hydroxyls constitute SFLPs. ● SFLPs act as collection centers to effectively adsorb PFOA. ● SFLPs endow accessible pathways for photogenerated holes rapid transfer to PFOA. Heterogeneous photocatalysis has gained substantial research interest in treating per- and polyfluoroalkyl substances (PFAS)-contaminated water. However, sluggish degradation kinetics and low defluorination efficiency compromise their practical applications. Here, we report a superior photocatalyst, defected Bi3O(OH)(PO4)2, which could effectively degrade typical PFAS, perfluorooctanoic acid (PFOA), with high defluorination efficiency. The UV light irradiation could in situ generate oxygen vacancies on Bi3O(OH)(PO4)2 through oxidation of the lattice hydroxyls, which further promotes the formation of Lewis acidic coordinately unsaturated bismuth sites. Then, the Lewis acidic sites couple with the proximal surface hydroxyls to constitute the surface frustrated Lewis pairs (SFLPs). With the in-depth spectroscopic analysis, we revealed that the photo-induced SFLPs act as collection centers to effectively adsorb PFOA and endow accessible pathways to transfer photogenerated holes to PFOA rapidly. Consequently, activation of the terminal carboxyl, a rate-limiting step for PFOA decomposition, could be easily achieved over the defected Bi3O(OH)(PO4)2 photocatalyst. These results suggest that SFLPs exhibit great potential in developing highly efficient photocatalysts to degrade persistent organic pollutants.  相似文献   
67.
A computational model is applied to the optimization of pulsed pumping systems for efficient in situ remediation of groundwater contaminants. In the pulsed pumping mode of operation, periodic rather than continuous pumping is used. During the pump-off or trapping phase, natural gradient flow transports contaminated groundwater into a treatment zone surrounding a line of injection and extraction wells that transect the contaminant plume. Prior to breakthrough of the contaminated water from the treatment zone, the wells are activated and the pump-on or treatment phase ensues, wherein extracted water is augmented to stimulate pollutant degradation and recirculated for a sufficient period of time to achieve mandated levels of contaminant removal. An important design consideration in pulsed pumping groundwater remediation systems is the pumping schedule adopted to best minimize operational costs for the well grid while still satisfying treatment requirements. Using an analytic two-dimensional potential flow model, optimal pumping frequencies and pumping event durations have been investigated for a set of model aquifer-well systems with different well spacings and well-line lengths, and varying aquifer physical properties. The results for homogeneous systems with greater than five wells and moderate to high pumping rates are reduced to a single, dimensionless correlation. Results for heterogeneous systems are presented graphically in terms of dimensionless parameters to serve as an efficient tool for initial design and selection of the pumping regimen best suited for pulsed pumping operation for a particular well configuration and extraction rate. In the absence of significant retardation or degradation during the pump-off phase, average pumping rates for pulsed operation were found to be greater than the continuous pumping rate required to prevent contaminant breakthrough.  相似文献   
68.
A steam injection pilot-scale experiment was performed on the unsaturated zone of a strongly heterogeneous fractured soil contaminated by jet fuel. Before the treatment, the soil was stimulated by creating sub-horizontal sand-filled hydraulic fractures at three depths. The steam was injected through one hydraulic fracture and gas/water/non-aqueous phase liquid (NAPL) was extracted from the remaining fractures by applying a vacuum to extraction wells. The injection strategy was designed to maximize the heat delivery over the entire cell (10 m × 10 m × 5 m). The soil temperature profile, the recovered NAPL, the extracted water, and the concentrations of volatile organic compounds (VOCs) in the gas phase were monitored during the field test. GC-MS chemical analyses of pre- and post-treatment soil samples allowed for the quantitative assessment of the remediation efficiency. The growth of the heat front followed the configuration of hydraulic fractures. The average concentration of total hydrocarbons (g/kg of soil) was reduced by ~ 43% in the upper target zone (depth = 1.5-3.9 m) and by ~ 72% over the entire zone (depth = 1.5-5.5 m). The total NAPL mass removal based on gas and liquid stream measurements and the free-NAPL product were almost 30% and 2%, respectively, of those estimated from chemical analyses of pre- and post-treatment soil samples. The dominant mechanisms of soil remediation was the vaporization of jet fuel compounds at temperatures lower than their normal boiling points (steam distillation) enhanced by the ventilation of porous matrix due to the forced convective flow of air. In addition, the significant reduction of the NAPL mass in the less-heated deeper zone may be attributed to the counter-current imbibition of condensed water from natural fractures into the porous matrix and the gravity drainage associated with seasonal fluctuations of the water table.  相似文献   
69.
Abundance indicators are required both to assess and to manage wild populations. As new techniques are developed and teams in charge of gathering the data change, data collection procedures (DCPs) can evolve in space and time. How to estimate an homogeneous series of abundance indicator despite changes in DCP? To tackle this question a hierarchical Bayesian modelling (HBM) approach is proposed. It integrates multiple DCPs in order to derive a single abundance indicator that can be compared over space and time irrespective of the DCP used. Compared to single DCP models, it takes further advantage for abundance estimation of the joint treatment of a larger set of spatio-temporal units. After presenting the general formulation of our HBM approach, it is applied to the juvenile Atlantic salmon (Salmo salar L.) population of the River Nivelle (France). Posterior model checking, using χ2 discrepancy measure, do not reveal any inadequacy between the model and the data. Despite a change in the DCP used (successive removals to catch-per-unit of effort), a unique abundance indicator for the 425 spatio-temporal units (site × year) sampled over twenty-four years (1985-2008) is estimated. The HBM approach allows the assessment of precision of the abundance estimates and shows variation between DCPs: a reduction in precision is observed during the most recent years (2005-2008) when only the catch-per-unit of effort DCP was used. The merits and generality of our HBM approach are discussed. We contend it extends previous single DCP models or inter-calibration of two DCPs, and it could be applied to a wide range of specific situations (taxon and DCPs).  相似文献   
70.
A series of Sr-doped BiFeO3 perovskites (Bi1-xSrxFeO3, BSFO) fabricated via sol-gel method was applied as peroxydisulfate (PDS) activator for ciprofloxacin (CIP) degradation. Various technologies were used to characterize the morphology and physicochemical features of prepared BSFO samples and the results indicated that Sr was successfully inserted into the perovskites lattice. The catalytic performance of BiFeO3 was significantly boosted by strontium doping. Specifically, Bi0.9Sr0.1FeO3 (0.1BSFO) exhibited the highest catalytic performance for PDS activation to remove CIP, where 95% of CIP (10 mg/L) could be degraded with the addition of 1 g/L 0.1BSFO and 1 mmol/L PDS within 60 min. Moreover, 0.1BSFO displayed high reusability and stability with lower metal leaching. Weak acidic condition was preferred to neutral and alkaline conditions in 0.1BSFO/PDS system. The boosted catalytic performance can be interpreted as the lower oxidation state of Fe and the existence of affluent oxygen vacancies generated by Sr doping, that induced the formation of singlet oxygen (1O2) which was confirmed as the dominant reactive species by radical scavenging studies and electron spin resonance (ESR) tests. The catalytic oxidation mechanism related to major 1O2 and minor free radicals was proposed. Current study opens a new avenue to develop effective A-site modified perovskite and expands their application for PDS activation in wastewater remediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号