首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   26篇
  国内免费   132篇
安全科学   123篇
废物处理   40篇
环保管理   34篇
综合类   225篇
基础理论   50篇
污染及防治   105篇
评价与监测   18篇
社会与环境   1篇
  2023年   14篇
  2022年   7篇
  2021年   26篇
  2020年   27篇
  2019年   18篇
  2018年   13篇
  2017年   12篇
  2016年   17篇
  2015年   42篇
  2014年   24篇
  2013年   44篇
  2012年   32篇
  2011年   38篇
  2010年   12篇
  2009年   21篇
  2008年   31篇
  2007年   44篇
  2006年   32篇
  2005年   18篇
  2004年   17篇
  2003年   17篇
  2002年   13篇
  2001年   9篇
  2000年   16篇
  1999年   7篇
  1998年   7篇
  1997年   9篇
  1996年   4篇
  1995年   2篇
  1994年   9篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
排序方式: 共有596条查询结果,搜索用时 125 毫秒
491.
铁炭微电解-Fenton试剂氧化法预处理广灭灵及丙草胺废水   总被引:4,自引:1,他引:3  
采用铁炭微电解~Fenton试剂氧化法预处理广灭灵和丙草胺废水(简称废水),考察了H2O2加入量、高浓度废水COD对废水处理效果的影响,进行了连续流废水处理实验。实验结果表明:Fenton试剂氧化反应的废水处理效果明显好于铁炭微电解反应;铁炭微电解对COD的去除率可达60.6%,Fenton试剂氧化反应后COD的总去除率可达72.3%;连续流废水处理效果差于静态实验。处理后,低浓度废水的BOD,/COD从0.28~0.32增至0.47,高浓度废水的BOD,/COD从0.39增至0.47。  相似文献   
492.
The objective of this paper is to study the hydrological characteristics and origin of the hydrogen sulphide spring water from the Split spa in Southern Croatia in 1987, 1988 and 2003. This paper presents the results of monitoring the content of chlorides and hydrogen sulphide as well as the temperature of the hydrogen sulphide spring water. Since the hydrogen sulphide content during the dry periods significantly differs from the hydrogen sulphide content during rainy periods, this paper also compares the results obtained for those two periods. Under the influence of great quantities of rainfall during cold periods (winter and the beginning of spring) the ratio between seawater and surface water changes and thus the reduction of chlorides and other minerals occurs. The lowered temperature also reduces hydrogen sulphide which can disappear completely. The concentration of 12‰ chlorides (76–94.4% days/year) and 12 mg/L hydrogen sulphide (66.7–88.9% days/year) has been taken as a limit value between water with a normal typical content and water in cold rainy periods. According to the monitoring results it can be concluded that hydrogen sulphide spring water consists of seawater and hydrogencarbonate surface water with a fairly constant content during dry periods while the hydrogencarbonate content increases during rainy periods.  相似文献   
493.
The future widespread use of hydrogen as an energy carrier brings in safety issues that have to be addressed before public acceptance can be achieved. The prediction of the consequences of a major accident release of hydrogen into the atmosphere or the contamination of high-pressure hydrogen storage facilities by air entrainment requires a good knowledge of the explosion parameters of hydrogen–air mixtures. The present paper reviews and comments on the current knowledge of dynamic parameters of hydrogen detonation for hazard assessment. The major problem that remains to be resolved involves the understanding of the effect of turbulence on the cellular detonation structure, the propagation of high-speed deflagrations and the transition from deflagration to detonations. It is recommended that future research should be aimed towards experiments that permit the quantitative understanding of the mechanisms of high-speed turbulent combustion rather towards large-scale tests in complex geometries where minimal quantitative information of fundamental significance could be extracted. In spite of its wide flammability and sensitivity to ignition and detonation initiation, it is felt that hydrogen can be produced, stored and handled safely with the appropriate considerations in the design of the hydrogen facilities.  相似文献   
494.
Characteristics of coal mine ventilation air flows   总被引:2,自引:0,他引:2  
Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.  相似文献   
495.
离子色谱法测定空气中氟化氢氯化氢和硫酸   总被引:1,自引:0,他引:1  
以多孔玻板吸收管采样,采用离子色谱法同时测定作业场所空气中的氟化氢、氯化氢和硫酸,采样效率>92%。氟化氢在0 mg/L~2.00 mg/L、氯化氢在0 mg/L~2.50 mg/L、硫酸在0 mg/L~4.00 mg/L范围内线性良好,检出限分别为0.003 mg/m3、0.02 mg/m3、0.023 mg/m3(按采样体积60 L计),标准溶液平行测定的RSD≤8.0%,两个质量浓度水平加标的平均回收率为92.6%~106%。  相似文献   
496.
采用全自动石墨消解仪加热、在碱性条件下用过氧化氢氧化海水中的三价铬,优化了极谱法测定条件,方法检出限为0.20μg/L,加标回收率为82.8%~105%,相对标准偏差5%,且对有证标准样品测试的结果符合准确度要求。方法具有选择性好、灵敏度高、准确等特点,适用于海水中总铬的测定。  相似文献   
497.
Control of odours should be considered to be a fundamental issue in order to site, design and manage sanitary landfills. With regard to construction and demolition (C&;D) debris, landfilling was the mainly adopted solution in many European Countries; in particular, gypsum drywalls can produce high concentrations of hydrogen sulphide (H2S) in landfill gas ranging from 7 ppm to 100 ppm. In some cases also dangerous concentrations until to 12,000 ppm were detected. In this paper H2S removal efficiency in a lab-scale vertical packed scrubber was investigated. Hydrogen sulphide abatement was evaluated for inlet H2S concentrations of 1000–100–10 ppm, adjusting scrubbing liquid pH in the range 9–12.5 by means of caustic soda (NaOH 2N solution). Moreover, best operating conditions for the system were defined as well as H2S abatement along the tower and liquid recirculation effectiveness in case of inlet H2S concentration of 10 ppm (typical odour concentration). Results showed that pH of 11.5 in scrubbing liquid could be considered the best value for removal of different inlet H2S concentrations, also taking into account parasitical consumption of NaOH due to CO2 absorption. Moreover, in case of continuous working of the system at H2S concentration of 10 ppm, strong removal efficiency was already obtained with a packed bed height of about 70 cm. Significant performances were ensured after 1 h of constant activity, consuming about 3 ml of soda per cubic meter of polluted air. Subsequently liquid blowdown was necessary.  相似文献   
498.
• Complete CT degradation was achieved by employing HA to CP/Fe(II)/FA process. • Quantitative detection of Fe(II) regeneration and HO• production was investigated. • Benzoic acid outcompeted FA for the reaction with HO•. • CO2 was the dominant reductive radical for CT removal. • Effects of solution matrix on CT removal were conducted. Hydroxyl radicals (HO•) show low reactivity with perchlorinated hydrocarbons, such as carbon tetrachloride (CT), in conventional Fenton reactions, therefore, the generation of reductive radicals has attracted increasing attention. This study investigated the enhancement of CT degradation by the synergistic effects of hydroxylamine (HA) and formic acid (FA) (initial [CT] = 0.13 mmol/L) in a Fe(II) activated calcium peroxide (CP) Fenton process. CT degradation increased from 56.6% to 99.9% with the addition of 0.78 mmol/L HA to the CP/Fe(II)/FA/CT process in a molar ratio of 12/6/12/1. The results also showed that the presence of HA enhanced the regeneration of Fe(II) from Fe(III), and the production of HO• increased one-fold when employing benzoic acid as the HO• probe. Additionally, FA slightly improves the production of HO•. A study of the mechanism confirmed that the carbon dioxide radical (CO2), a strong reductant generated by the reaction between FA and HO•, was the dominant radical responsible for CT degradation. Almost complete CT dechlorination was achieved in the process. The presence of humic acid and chloride ion slightly decreased CT removal, while high doses of bicarbonate and high pH inhibited CT degradation. This study helps us to better understand the synergistic roles of FA and HA for HO• and CO2 generation and the removal of perchlorinated hydrocarbons in modified Fenton systems.  相似文献   
499.
高浓度铬对凤眼莲的伤害及膜脂过氧化作用的影响   总被引:11,自引:0,他引:11  
周易勇 《环境科学》1993,14(3):60-61
为了初步探讨在高浓度重金属胁迫下凤眼莲(Eichhornia crassipes)的生理变化,通过急性实验法从活性氧伤害角度探讨铬伤害凤眼莲的机理.结果表明,在高浓度(50ppm)铬污染下,凤眼莲叶片中SOD和CAT活性以及叶绿索α的含量明显下降,组织电解质外渗率和MDA含量明显升高,与对照值之间的差异达显著水平(P<0.05);叶片中H_2O_2含量无明显变化.  相似文献   
500.
Hydrodynamic cavitation (HC)-based treatments have been proposed for the degradation of phenol as a toxic pollutant. The present work aimed to optimize the degradation of phenol using HC by means of Doehlert experimental design, which has not been previously addressed. Initially, operational parameters of hydraulic characteristics of the pump, inlet pressure, solution pH, and initial concentration were optimized; later, the effects of pH solution and H2O2 loading or initial pollutant concentration on phenol degradation were explored using the Doehlert experimental design. It was observed that phenol degradation is strongly dependent on the pH of the solution. Also, the acidic condition favors the formation of hydroxyl radicals and thus, the degradation of phenol. Based on the Doehlert matrix, the 94.1% phenol degradation and 68.60% total organic carbon (TOC) were obtained in 180 min at 304.5 mg/L of hydrogen peroxide at an initial concentration of 20 mg/L, 2.0 pH, and 90 psi inlet pressure, providing a cavitational yield of 6.33 × 10−6 mg/J and minimum treatment cost of US$/L 0.13. Overall, it has been observed that HC can be a promising route for the removal of pollutants (phenol) effectively using hydrogen peroxide as an additive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号