An experimental investigation of flammability limits of hydrogen, methane and propane in air and oxygen at reduced pressures was carried out. A slow influence of sizes of an experimental vessel of a diameter higher than 125 mm on the flammability limits was revealed, but an influence of a type of an oxidizer (air or oxygen) and an ignition energy is significant. Critical values of an initial pressure for a possibility of a flame propagation were determined. The limiting values of the ignition energy were determined, for which an elevation of this parameter does not influence the critical pressure and the flammability region. A qualitative interpretation of obtained experimental results is given, which is based on a peculiarities of a flame initiation. 相似文献
A correlation of the lower flammability limit for hybrid mixtures was recently proposed by us. The experimental conditions including ignition energy and turbulence which play a primary role in a gas or dust explosion were at fixed values. The sensitivity of such experimental conditions to the accuracy of the proposed formula was not thoroughly discussed in the previous work. Therefore, this work studied the effect of varying the ignition energy and turbulence intensity to the formula proposed in our previous paper. For ignition energy effect, results from methane/niacin mixture demonstrated that the MEC and LFL will not be affected by changing ignition energy. There is no distinguishable difference among gas explosion index (KG) and dust explosion index (KSt) derived from tests with every ignition energy (2.5 kJ, 5 kJ and 10 kJ) in a 36 L vessel. The proposed formula is independent of ignition energy. For turbulence effect, the proposed formula can have a good prediction of the explosion and non-explosion zone if the ignition delay time is within a certain range. The formula prediction is good as the ignition delay time increases up to 100 ms in this work. Propane/niacin and propane/cornstarch mixtures are also tested to validate the proposed formula. It has been confirmed that the proposed formula predicts the explosion and non-explosion zone boundary of such mixtures. 相似文献
A project was performed for the Explosion Research Cooperative to develop algorithms for predicting the frequencies of explosions based on a variety of design, operating and environmental conditions. Algorithms were developed for estimating unit-based explosion frequencies, such as those reported in API Recommended Practice 752, but in more detail and covering a much broader range of chemical process types. The project also developed methods for predicting scenario-based explosion frequencies, using frequencies of initiating events and conditional probabilities of immediate ignition and delayed ignition resulting in explosion. The algorithms were based on a combination of published data and expert opinion. 相似文献
The flame propagation parameters of aluminum nanopowder in the bulk layer were investigated. The aluminum nanopowder produced by the method of the electrical explosion of wires used in this study. The aluminum bulk layer was ignited by open flame, heated body, or electric spark. The flame propagation behavior is described as a two-stage process: 1) flame propagation over the surface layer and deep into the sample; 2) the thermal explosion mode. It was found that the type of ignition source influences the parameters of the first stage of the combustion. The minimum ignition energy for the aluminum nanopowder bulk layer was measured. The effect of the bulk layer inclination angle on flame propagation parameters was determined. The obtained results can be useful in assessing the fire hazard and organizing safe processes of industrial production during the use, storage, handling, and transportation of metal nanopowders. 相似文献
Temperature measurement on propagating flame and minimum explosible concentration are investigated. The dust explosion experiments of nano-particle dust clouds exhibit higher temperature gradient in preheat zone and lower MEC than those of micron particle dust clouds. A heterogeneous model is proposed to describe the oxidation process under two extreme conditions: whether the alumina film is involved in the reaction or not. The new methodology allows the estimation of oxidation kinetics of growing alumina. For micron particle, the model clarifies that the activation energy which has been wrongly considered to be for aluminum oxidation should be for lattice diffusion, and the initial reaction rate is proved to be dominated by the diffusion rate of oxygen through alumina shell as diffusion controlled reaction. For nano-particle, the model explained that why the reported activation energy shows significantly lower than that for micron particle, due to initially ignorable alumina film or considered as kinetically controlled reaction. However, as reaction occurs and alumina builds up on the surface, the interference of alumina somewhat increases the activation energy. 相似文献
The method described in this paper enabled reliable and accurate positioning of an overdriven detonation by calculation of shock wave velocities (detonation and retonation) for hydrogen explosions in a closed 18 m long horizontal DN150 pipe. This enabled an empirical correlation between the ignition position and the run-up distance to DDT to be determined. It was shown that the initial ability of the flame to expand unobstructed and the piston-like effect of burnt gas expanding against the closed end of the tube contributed to initial flame acceleration and hence were able to affect the run-up distance to overdriven detonation. Flame speeds and rates of initial pressure rise were also used to explain how these two competing effects were able to produce a minimum in the run-up distance to DDT. The shortest run-up distance to DDT, relative to the ignition position, for this pipe and gas configuration was found when the ignition position was placed 5.6 pipe diameters (or 0.9 m) from the closed pipe end. The shortest run-up distance to DDT relative to the end of the pipe was recorded when the ignition source was placed 4.4 pipe diameters or 0.7 m from the pipe end. 相似文献
Mechanical friction and impacts is still today a main cause of ignition of explosive atmospheres (ATEX) in the industry and this trend seems to be stable in time. This situation certainly results from a significant gap of knowledge in the underlying mechanisms so that the parameters to play on are not precisely identified. In this programme of European dimensions, the process of degradation of the mechanical energy into heat during friction and impacts have been studied.
An extensive experimental programme is presented to this end. The mechanisms of dissipation of the mechanical energy into heat during friction has been studied with rubbing machines in which a slider equipped with temperature sensors rubs against a rotating wheel. For impacts, a new device has been developed using a special “air driven cannon” to propel a projectile accurately up to 50 m/s onto an inclined target. A very significant effort has been reserved to the investigation of the ignition mechanisms, not only for ATEX but also for dust accumulations.
Some “simple” modelling is proposed on purpose of practical applications. For frictional situations, a critical rubbing power is calculated without any limitations about any lower boundary concerning the rubbing velocity. For “impacts”, the relevant parameter for ignition is not the kinetic energy of the projectile but its velocity and the nature of the materials. 相似文献