首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2392篇
  免费   219篇
  国内免费   607篇
安全科学   39篇
废物处理   13篇
环保管理   900篇
综合类   1378篇
基础理论   313篇
污染及防治   116篇
评价与监测   194篇
社会与环境   206篇
灾害及防治   59篇
  2024年   10篇
  2023年   38篇
  2022年   62篇
  2021年   81篇
  2020年   79篇
  2019年   86篇
  2018年   73篇
  2017年   88篇
  2016年   123篇
  2015年   152篇
  2014年   109篇
  2013年   172篇
  2012年   182篇
  2011年   176篇
  2010年   144篇
  2009年   154篇
  2008年   106篇
  2007年   157篇
  2006年   189篇
  2005年   142篇
  2004年   109篇
  2003年   113篇
  2002年   103篇
  2001年   63篇
  2000年   80篇
  1999年   49篇
  1998年   42篇
  1997年   31篇
  1996年   29篇
  1995年   36篇
  1994年   20篇
  1993年   25篇
  1992年   25篇
  1991年   15篇
  1990年   18篇
  1989年   8篇
  1988年   11篇
  1987年   9篇
  1984年   6篇
  1983年   9篇
  1982年   10篇
  1981年   11篇
  1980年   9篇
  1979年   8篇
  1978年   5篇
  1977年   5篇
  1975年   7篇
  1974年   7篇
  1972年   6篇
  1971年   7篇
排序方式: 共有3218条查询结果,搜索用时 375 毫秒
61.
ABSTRACT: This paper evaluates the effects of watershed geometric representation (i.e., plane and channel representation) on runoff and sediment yield simulations in a semiarid rangeland watershed. A process based, spatially distributed runoff erosion model (KINEROS2) was used to explore four spatial representations of a 4.4 ha experimental watershed. The most complex representation included all 96 channel elements identifiable in the field. The least complex representation contained only five channel elements. It was concluded that oversimplified watershed representations greatly influence runoff and sediment yield simulations by inducing excessive infiltration on hillslopes and distorting runoff patterns and sediment fluxes. Runoff and sediment yield decrease systematically with decreasing complexity in watershed representation. However, less complex representations had less impact on runoff and sediment‐yield simulations for small rainfall events. This study concludes that the selection of the appropriate level of watershed representation can have important theoretical and practical implications on runoff and sediment yield modeling in semiarid environments.  相似文献   
62.
ABSTRACT: Intensive cropping systems based on mechanical movement of soil have induced land degradation in most agricultural areas due to soil erosion and soil fertility losses. Thus, farmers have been increasing fertilization rates to maintain an economically competitive crop yield. This practice has resulted in water quality degradation and lake eutrophication in many agricultural watersheds. Research was conducted in the Patzcuaro watershed in central Mexico to develop appropriate technology that prevents nonpoint source pollution from fertilizers. Organic matter (OM) and nitrogen (N) losses in runoff and nitrate (NO3‐N) percolation in Andisols with corn under conventional till (CT) and no‐till (NT) treatments using variable percentages of crop residue as soil cover were investigated for steep‐slope agriculture. USLE type runoff plots were used to collect water runoff, while suction tubes with porous caps at 30, 60, and 90 cm depth were used to sample soil water solutes for NO3‐N analyses. Results indicated a significant reduction of N and OM losses in runoff as residue cover increased in the NT treatments. Inorganic N in runoff was 25 kg/ha for NT without residue cover (NT‐0) and 6 kg/ha for the NT with 100 percent residue cover (NT‐100). Organic matter losses in runoff were 157 and 24 kg/ha for the NT‐0 and NT‐100 treatments, respectively. Nitrate‐N percolation was evident in CT and NT with 100 percent residue cover (NT‐100). However, NT‐100 had higher NO3‐N concentration at the root zone, suggesting the possibility of reducing fertilization rates with the use of NT treatments.  相似文献   
63.
ABSTRACT: In 1998 and 1999, third‐order watersheds in high mature forest (HMF) and low mature forest (LMF) classes were selected along gradients of watershed storage within each of two hydrogeomorphic regions in the Lake Superior Basin to evaluate threshold effects of storage on hydrologic regimes and watershed exports. Differences were detected between regions (North and South Shore) for particulates, nutrients, and pH, with all but silica values higher for South Shore streams (p < 0.05). Mature forest effects were detected for turbidity, nutrients, color, and alkalinity, with higher values in the LMF watersheds, that is, watersheds with less that 50 percent mature forest cover. Dissolved N, ammonium, N:P, organic carbon, and color increased, while suspended solids, turbidity, and dissolved P decreased as a function of storage. Few two‐way interactions were detected between region and mature forest or watershed storage, thus threshold based classification schemes could be used to extrapolate effects across regions. Both regional differences in water quality and those associated with watershed attributes were more common for third‐order streams in the western Lake Superior drainage basin as compared with second‐order streams examined in an earlier study. Use of ecoregions alone as a basis for setting regional water quality criteria would have led to misinterpretation of reference condition and assessment of impacts in the Northern Lakes and Forest Ecoregion.  相似文献   
64.
A study of a watershed planning process in the Cache River Watershed in southern Illinois revealed that class divisions, based on property ownership, underlay key conflicts over land use and decision-making relevant to resource use. A class analysis of the region indicates that the planning process served to endorse and solidify the locally-dominant theory that landownership confers the right to govern. This obscured the class differences between large full-time farmers and small-holders whose livelihood depends on non-farm labor. These two groups generally opposed one another regarding wetland drainage. Their common identity as “property owner” consolidated the power wielded locally by large farmers. It also provided an instrument – the planning document – for state and federal government agencies to enhance their power and to bring resources to the region. The planning process simultaneously ameliorated conflicts between government agencies and the large farmers, while enhancing the agencies’ capacity to reclaim wetlands. In this contradictory manner, the plan promoted the environmental aims of many small-holders, and simultaneously disempowered them as actors in the region’s political economy. An erratum to this article is available at .  相似文献   
65.
Effective watershed management requires an accurate assessment of the pollutant loads from the associated point and nonpoint sources. The importance of wet weather flow (WWF) pollutant loads is well known, but in semi‐arid regions where urbanization is significant the pollutant load in dry weather flow (DWF) may also be important. This research compares the relative contributions of potential contaminants discharged in DWF and WWF from the Ballona Creek Watershed in Los Angeles, California. Models to predict DWF and WWF loads of total suspended solids, biochemical oxygen demand, nitrate‐nitrogen, nitrite‐nitrogen, ammonia‐nitrogen, total Kjeldahl nitrogen, and total phosphorus from the Ballona Creek Watershed for six water years dating from 1991 to 1996 were developed. The contaminants studied were selected based on data availability and their potential importance in the degradation of Ballona Creek and Santa Monica Bay beneficial uses. Wet weather flow was found to contribute approximately 75 percent to 90 percent of the total annual flow volume discharged by the Ballona Creek Watershed. Pollutant loads are also predominantly due to WWF, but during the dry season, DWF is a more significant contributor. Wet weather flow accounts for 67 to 98 percent of the annual load of the constituents studied. During the dry season, however, the portion attributable to DWF increases to greater than 40 percent for all constituents except biochemical oxygen demand and total suspended solids. When individual catchments within the watershed are considered, the DWF pollutant load from the largest catchment is similar to the WWF pollutant load in two other major catchments. This research indicates WWF is the most significant source of nonpoint source pollution load on an annual basis, but management of the effects of the nonpoint source pollutant load should consider the seasonal importance of DWF.  相似文献   
66.
Rapid land development is raising concern regarding the ability of urbanizing watersheds to sustain adequate base flow during periods of drought. Long term streamflow records from unregulated watersheds of the lower to middle Delaware River basin are examined to evaluate the impact of urbanization and imperviousness on base flow. Trends in annual base flow volumes, seven‐day low flows, and runoff ratios are determined for six urbanizing watersheds and four reference watersheds across three distinct physiographic regions. Hydrograph separation is used to determine annual base flow and stormflow volumes, and nonparametric trend tests are conducted on the resulting time series. Of the watersheds examined, the expected effects of declining base flow volumes and seven‐day low flows and increasing stormflows are seen in only one watershed that is approximately 20 percent impervious and has been subject to a net water export over the past 15 years. Both interbasin transfers and hydrologic mechanisms are invoked to explain these results. The results show that increases in impervious area may not result in measurable reductions in base flow at the watershed scale.  相似文献   
67.
By signing a water sharing agreement (WSA), countries agree to release an amount of river water in exchange for a negotiated compensation. We examine the vulnerability of such agreements to reduced water flows. Among all WSAs that are acceptable to riparian countries, we find out the one which is self-enforced under the most severe drought scenarios. The so-called upstream incremental WSA assigns to each country its marginal contribution to its followers in the river. Its mirror image, the downstream incremental WSA, is not sustainable to reduced flow at the source. Self-enforcement problems can be solved by setting water releases and compensations contingent to water flow. We apply our analysis to the Aral Sea Basin. We compute the upstream incremental compensations for the Bishkek agreement and asses its vulnerability with historical flows.  相似文献   
68.
The concept of shifting baselines in conservation science implies advocacy for the use of historical knowledge to inform these baselines but does not address the feasibility of restoring sites to those baselines. In many regions, conservation feasibility varies among sites due to differences in resource availability, statutory power, and land‐owner participation. We used zooarchaeological records to identify a historical baseline of the freshwater mussel community's composition before Euro‐American influence at a river‐reach scale (i.e., a kilometer stretch of river that is abiotically similar) in the Leon River of central Texas (U.S.A.). We evaluated how the community reference position and the feasibility of conservation might enable identification of sites where conservation actions would preserve historically representative communities and be likely to succeed. We devised a conceptual model that incorporated community information and landscape factors to link the best conservation areas to potential cost and conservation benefits. Using fuzzy ordination, we identified modern mussel beds that were most like the historical baseline. We then quantified housing density and land use near each river reach identified to estimate feasibility of habitat restoration. Using our conceptual framework, we identified reaches of high conservation value (i.e., contain the best mussel beds) and where restoration actions would be most likely to succeed. Reaches above Lake Belton were most similar in species composition and relative abundance to zooarchaeological sites. A subset of these mussel beds occurred in locations where conservation actions appeared most feasible. Our results show how to use zooarchaeological data (biodiversity data often readily available) and estimates of conservation feasibility to inform conservation priorities at a local spatial scale.  相似文献   
69.
Despite long-standing knowledge of the benefits of riparian buffers for mitigating nonpoint source pollution, many streams are unprotected by buffers. Even landowners who understand ecological values of buffers mow riparian vegetation to the streambank. Do trends in rural riparian conditions reflect the development of riparian forest science? What motivates residential riparian management actions? Using high-resolution orthoimagery, we quantified riparian conditions and trends between 1998 and 2015 in the rural upper Little Tennessee River basin in Macon County, North Carolina and explored how landowners view riparian zone management and riparian restoration programs. Buffer composition in 2015 was as follows: no buffer (32.5%), narrow (19.3%), forested (26.7%), shrub (7.2%), and intermediate (7.0%). Relative to 1998, the greatest decrease occurred in the no buffer class (−17.7%, 46 km) and the largest increases occurred in the shrub (+72.5%, 20 km) and narrow (12.6%, 14 km) classes. Forested buffer marginally increased. Semi-structured interview data suggest that landowners prioritize recreational and scenic aspects of riparian buffers over ecological functions such as filtration and bank stabilization. Riparian restoration programs might be made more enticing to non-adopters if outreach language appealed to landowner priorities, design elements demonstrated intentional management, and program managers highlighted areas where ecological goals and landowner values align.  相似文献   
70.
Teague, Aarin, Philip B. Bedient, and Birnur Guven, 2011. Targeted Application of Seasonal Load Duration Curves Using Multivariate Analysis in Two Watersheds Flowing Into Lake Houston. Journal of the American Water Resources Association (JAWRA) 47(3):620‐634. DOI: 10.1111/j.1752‐1688.2011.00529.x Abstract: Water quality is a problem in Lake Houston, the primary source of drinking water for the City of Houston, Texas, due to pollutant loads coming from the influent watersheds, including Spring Creek and Cypress Creek. Statistical analysis of the historic water quality data was developed to understand the source characterization and seasonality of the watershed. Multivariate analysis including principal component, cluster, and discriminant analysis provided a custom seasonal assessment of the watersheds so that loading curves may be targeted for season specific pollutant source characterization. The load duration curves have been analyzed using data collected by the U.S. Geologic Survey with corresponding City of Houston water quality data at the sites to characterize the behavior of the pollutant sources and watersheds. Custom seasons were determined for Spring Creek and Cypress Creek watersheds and pollutant source characterization compared between the seasons and watersheds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号