首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   30篇
  国内免费   119篇
安全科学   1篇
环保管理   22篇
综合类   291篇
基础理论   45篇
污染及防治   26篇
评价与监测   18篇
社会与环境   40篇
灾害及防治   1篇
  2023年   6篇
  2022年   3篇
  2021年   3篇
  2020年   6篇
  2019年   15篇
  2018年   9篇
  2017年   8篇
  2016年   13篇
  2015年   15篇
  2014年   15篇
  2013年   21篇
  2012年   30篇
  2011年   44篇
  2010年   25篇
  2009年   38篇
  2008年   29篇
  2007年   30篇
  2006年   28篇
  2005年   16篇
  2004年   18篇
  2003年   17篇
  2002年   23篇
  2001年   8篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1974年   1篇
排序方式: 共有444条查询结果,搜索用时 156 毫秒
121.
碱蓬湿地CH4排放通量及影响因素研究   总被引:1,自引:0,他引:1  
2008年4月至10月,以辽河口碱蓬湿地为研究区域,采用静态箱—气相色谱法对CH4排放通量进行了原位测定,分析了碱蓬湿地CH4排放通量的季节变化特征,同时研究了地表温度、土壤有机质含量及碱蓬的地上生物量对排放通量的影响。结果表明,碱蓬湿地是CH4的排放源,CH4排放呈单峰型变化趋势,7月排放通量最大为55.29μg/(m2.h)。CH4排放通量与土壤温度、土壤有机质含量及碱蓬地上生物量密切相关。CH4排放通量与地表温度之间呈显著的指数相关关系;土壤有机质含量及碱蓬地上生物量的变化与CH4排放通量的季节变化呈二次正相关关系。  相似文献   
122.
黄河三角洲河口区浮游植物组成及多样性分析   总被引:1,自引:0,他引:1  
通过对2010年5月、8月、11月黄河三角洲主要河口浮游植物的调查,该水域共有浮游植物42种,以硅藻门所占比例较大;细胞密度为5.3×107~2.41×109ind/m3;生物多样性H为0.56~1.4,植物物种丰度指数D为0.06~0.36,均匀度指数J值均在0.5以上。结果表明:与莱州湾、渤海湾海域相比,黄河三角洲主要河口区浮游植物具有一定的淡水特征,种类组成及数量差异较大。黄河三角洲主要河流入水口处浮游植物的Shannon-Weaver多样性指数、Pielou均匀度指数与莱州湾、渤海湾海域相比差别不大,均较低。渤海水域主要河流入水口处营养状态均为中营养型以下,且春季好于夏秋两季,表现出一定的季节趋势。  相似文献   
123.
基于2011年洪季在南支河道从小潮至大潮连续8天现场定点观测所获得水沙观测数据(包括潮流、悬沙浓度、悬沙粒度和表层沉积物样品),通过对悬沙浓度、悬沙粒度和沉积物在不同时刻的组成分析,以及流速、悬沙和底床切应力的相互影响分析,对长江河口南支河道悬沙随时间变化特性和河床沙再悬浮作用进行了研究。结果表明:观测期间南支主槽下段落潮水动力强于涨潮;落潮悬沙浓度高于涨潮,并由小潮至大潮逐渐增加;落潮悬沙粒径粗于涨潮,并随小潮至大潮不断粗化;河床沉积物颗粒较粗,细砂类组成达到90%以上;流速、悬沙及底床切应力之间存在显著相关性;河床泥沙再悬浮强度较强,其量值有限。而近期研究区域悬沙浓度和水沙关系发生变化,与流域来沙出现锐减有关。  相似文献   
124.
崇明东滩夏冬季表层沉积物细菌多样性研究   总被引:5,自引:0,他引:5       下载免费PDF全文
以长江口崇明东滩高、中、低潮滩夏、冬两季表层沉积物中基因组DNA为模板,PCR扩增样品中细菌16S rRNA基因V3区片段,通过克隆、测序,构建相应基因文库.系统发育分析结果表明,崇明东滩高、中、低潮滩表层沉积物共包含12个主要门类的细菌:变形菌门(Proteobacteria)(α-、β-、γ-、δ-和ε-亚群)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)、螺旋体门(Spirochaetes)、疣微菌门(Verrucomicrobia)、浮霉菌门(Planctomycetes)、绿菌门(Chlorobi)、网团菌门(Dictyoglomi)、硝化螺旋菌门(Nitrospirae),此外还存在大量未被认知的序列.中潮滩和低潮滩的优势菌为变形菌,高潮滩的优势菌为拟杆菌.DOTUR多样性分析结果表明,崇明中潮滩细菌多样性最高,低潮滩次之,高潮滩最低;夏季细菌多样性高于冬季.夏、冬两季细菌群落差异高潮滩最大,低潮滩次之,中潮滩最小.  相似文献   
125.
The effects of large‐scale destruction of the tropical forest on soil characteristics are presented, with emphasis on the Amazon Basin. Human activities progressively modify natural equilibrium in soils and streams, especially in Brazil, where about 25 000 km2 of virgin forest are annually removed. Of the soil uses, the installation of annual crops and pastures in previously clear‐cut and burned areas is the main subject of this paper.  相似文献   
126.
Surface sediments were collected from the Yangtze River Estuary (YRE) in May 2012, August 2012, November 2012 and February 2013 to analyse the seasonal and spatial distributions of acid-volatile sulphide (AVS), simultaneously extracted metals (SEM) and the sediment toxicity. An optimised method was used for the AVS and SEM analysis and the results showed that the seasonal variations of AVS were positively correlated with changes in water temperature and the position of higher AVS was relatively fixed. The average of SEM was gradually increased from May 2012 to February 2013 and there were abnormally high values of SEMCu and SEMNi in the YRE. Concentrations of the five SEM components were in the following order: Cd?相似文献   
127.
Distributions of organic carbon and trace metals were investigated in the tropical Tsengwen river end-member and in the estuary to better understand thoroughly the riverine fluxes and estuarine transports of constituents into the sea. Experimental results indicated that riverine fluxes of organic carbon and trace metals possessed a highly temporal variability, attributed primarily to temporal variation in river water discharge and suspended load. More than 70% of annual fluxes of dissolved constituents and >90% of particulate constituents arose from river floods caused by summer typhoons. the flushing time of fresh water in the estuary varied from a half month in the dry season to a half day in the flood period. Dissolved organic carbon (DOC) and nutrienttype metals (Cd, Cu, Zn) were conservatively transported through the estuary. Dissolved particle-reactive metals (Mn, Pb), however, were apparently transported non-conservatively through the estuary. Particulate organic carbon (POC) and trace metals (PTM) were transported non-conservatively by following the transport mode of total suspended matter (TSM) in the estuary. DOC slightly dominates the transport of organic carbon while particle-reactive PTM predominates the transport of trace metals through the estuary. Total organic carbon (TOC) in estuarine sediment was progressively enriched with 13C downstream, as derived by mixing the overlying TSM between terrestrial and marine end-members. Distributions of trace metals in sediment were subsequently controlled by sedimentary TOC and particle size. Based on results presented here, we believe that enrichments of trace metals in the estuary are attributed primarily to the natural processes of transport and sedimentation of fluvial TSM  相似文献   
128.
采用GC-MS法对2005年9月8—15日采集于长江口区域的沉积物中的半挥发性有机物(SVOCs)进行测定,并对其组成和空间分布趋势进行了分析. 结果表明,该区域沉积物中共检出半挥发性有机物44种,包括多环芳烃类化合物14种,酯类化合物6种,酚类化合物10种,取代苯类化合物5种,醚类化合物4种,其他类化合物5种. 长江口南支沉积物中w(SVOCs)普遍高于北支入口和徐六泾,南支附近城市排放的工业废水和生活污水可能是该区域半挥发性有机物的主要来源. 沉积物中多环芳烃类化合物(PAHs)的风险评估显示,除C采样点苊存在一定的生态风险外,长江口其他区域PAHs的潜在生态风险很小.   相似文献   
129.
近期长江口沉积物中SVOCs的变化及生态风险评价   总被引:9,自引:1,他引:8  
采用GC-MS法对2007年4月24—30日采集于长江口部分区域的沉积物中的64种半挥发性有机物(SVOCs)进行分析测定,并对影响该类污染物分布的主要因素进行了探讨. 结果表明,该区域沉积物中定量检出半挥发性有机物15种,包括多环芳烃类化合物8种,取代苯类化合物1种,酚类化合物2种,酯类化合物3种,其他类化合物1种. 其中,属于我国优先控制污染物的有7种,属于美国优先控制污染物的有12种. 采样点SVOCs的分布未呈现出明显的规律性,其分布受多种因素的影响. 应用ERL与ERM指标进行PAHs的生态风险评价,长江口部分区域不存在严重的生态风险. 应用EEC/ERL进行生态风险细分,各采样点分布在无风险与低度潜在生态风险之内,对生态安全威胁不大.   相似文献   
130.
The coastal ecosystem of the Pearl River Estuary (PRE) has been overfished and received a high level of combined pollution since the 1980s. Ecopath with Ecosim was used to construct two ecosystem models (for 1981 and 1998) to characterize the food web structure and functioning of the ecosystem. Pedigree work and simple sensitivity analysis were carried out to evaluate the quality of data and the uncertainty of the models. The two models seem reliable with regards to input data of good quality. Comparing the variations of outputs of these two models aimed to facilitate assessment of changes of the ecosystem during the past two decades.The trophic structure of the ecosystem has changed with an increase in the biomass proportion of lower trophic level (TL) organisms and a decrease in top predator biomass proportion. All the indices of ecosystem maturity examined show that the system was in a more mature condition in 1981 than in 1998, although the system has been in a condition of stress due to anthropogenic disturbances, such as environmental pollution and habitat destruction since 1981. The ecosystem was aggregated into six and seven integral TLs in 1981 and 1998, respectively, using the trophic aggregation routine of Ecopath. Most of the total system biomass and catch took place at TL II and III in both years. But the distribution of the total system biomass and catch at different TLs changed with decreasing proportions in higher TLs in 1998. The mean transfer efficiency was 9.1% and 10.2% in 1981 and 1998, respectively.Comparative network analysis allowed quantification of the importance of direct and indirect trophic interactions among functional groups. Moreover, a method derived from the mixed trophic impact (MTI) analysis allowed estimating importance of groups in terms of “keystoneness” and identifying the keystone species in the two models over the past two decades. The results indicate that there were no clear keystone species in 1998 but two keystone species at medium trophic levels were identified in 1981. Moreover, organisms located at low trophic levels such as phytoplankton, zooplankton and benthic invertebrates were identified to have relatively high keystoneness in the ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号