首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   5篇
  国内免费   8篇
环保管理   44篇
综合类   28篇
基础理论   12篇
污染及防治   3篇
评价与监测   16篇
社会与环境   5篇
  2024年   2篇
  2022年   2篇
  2021年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   8篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   8篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1983年   1篇
  1981年   1篇
  1980年   4篇
  1978年   1篇
  1977年   3篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
31.
Tropical deforestation is occurring at an alarming rate, threatening the ecological integrity of protected areas. This makes it vital to regularly assess protected areas to confirm the efficacy of measures that protect that area from clearing. Satellite remote sensing offers a systematic and objective means for detecting and monitoring deforestation. This paper examines a spectral change approach to detect deforestation using pattern decomposition (PD) coefficients from multitemporal Landsat data. Our results show that the PD coefficients for soil and vegetation can be used to detect deforestation using change vector analysis (CVA). CVA analysis demonstrates that deforestation in the Kinabalu area, Sabah, Malaysia has significantly slowed from 1.2% in period 1 (1973 and 1991) to 0.1% in period 2 (1991 and 1996). A comparison of deforestation both inside and outside Kinabalu Park has highlighted the effectiveness of the park in protecting the tropical forest against clearing. However, the park is still facing pressure from the area immediately surrounding the park (the 1km buffer zone) where the deforestation rate has remained unchanged.  相似文献   
32.
We investigated the use of Landsat ETM+ images in the monitoring of turbidity, colored dissolved organic matter (CDOM), and Secchi disk transparency (Z(SD)) in lakes of two river basins located in southern Finland. The ETM+ images were acquired in May, June, and September 2002 and were corrected for atmospheric disturbance using the simplified method of atmospheric correction (SMAC) model. The in situ measurements consisted of water sampling in the largest lake of the region, routine monitoring results for the whole study area, and Z(SD) observations made by volunteers. The ranges of the water quality variables in the dataset were as follows: turbidity, 0.6-25 FNU; absorption coefficient of CDOM at 400 nm, 1.0-12.2 m(-1); Z(SD), 0.5-5.5 m; and chlorophyll a concentration, 2.4-80 mug L(-1). The estimation accuracies of the image-specific empirical algorithms expressed as relative errors were 23.0% for turbidity, 17.4% for CDOM, and 21.1% for Z(SD). If concurrent in situ measurements had not been used for algorithm training, the average error would have been about 37%. The atmospheric correction improved the estimation accuracy only slightly compared with the use of top-of-atmospheric reflectances. The accuracy of the water quality estimates without concurrent in situ measurements could have been improved if in-image atmospheric parameters had been available. The underwater reflectance simulations of the ETM+ channel wavelengths using water quality typical for Finnish lakes (data from 1113 lakes) indicated that region-specific algorithms may be needed in other parts of the country, particularly in the case of Z(SD). Despite the limitations in the spectral and radiometric resolutions, ETM+ imagery can be an effective aid, particularly in the monitoring and management of small lakes (<1 km(2)), which are often not included in routine monitoring programs.  相似文献   
33.
Scenes from the series of multispectral sensors on the Landsat satellites were used to map recent changes (between 1972 and 2004) in forest cover within and adjacent to stream networks of an intensively farmed region of the southern Great Barrier Reef catchment (Australia). Unsupervised ISODATA classifications of Tasseled-Cap transformed data (at 57 m ground resolution) mapped forest and cleared areas within 150 m of Pisoneer catchment waterways with 72.2% overall accuracy (K(hat) = 0.469), when adjusted for the size of each class. Although the user's accuracy was higher for the forest class (82.1 +/- 8.4% at alpha = 0.05), large errors of commission (34.2 +/- 8.3%) substantially affected map accuracy for the cleared class. The main reasons for misclassification include: (1) failure to discriminate narrowly vegetated riparian strips; (2) misregistration of scenes; and (3) spectral similarity of ground cover. Error matrix probabilities were used to adjust the mapped area of classes, resulting in a decline of forest cover by 12.3% and increase of clearing by 18.5% (22.4 km(2) change; 95% confidence interval: 14.3-29.6 km(2)) between 1972 and 2004. Despite the mapping errors, Landsat data were able to identify broad patterns of land cover change that were verified from aerial photography. Most of the forest losses occurred in open forest to woodland habitat dominated by Eucalyptus, Corymbia, and Lophostemon species, which were largely replaced by sugarcane cropping. Melaleuca communities were similarly affected, though they have a much smaller distribution in the catchment.  相似文献   
34.
Water quality at Omerli Dam, which is a vital potable water resource of Istanbul City, Turkey was assessed using the first four bands of Landsat 7-ETM satellite data, acquired in May 2001 and water quality parameters, such as chlorophyll-a, suspended solid matter, secchi disk and total phosphate measured at several measurement stations at Omerli Dam during satellite image acquisition time and archived at the Marine Pollution and Ecotoxicology laboratory of the Marmara Research Center, where this study was carried out. Establishing a relationship between this data, and the pixel reflectance values in the satellite image, chlorophyll-a, suspended solid matter, secchi disk and total phosphate maps were produced for the Omerli Dam.  相似文献   
35.
ABSTRACT: The project described in this report was undertaken by the Louisiana State Planning Office to establish the extent of backwater flooding in Louisiana in April 1975. Band 7 Landsat imagery, enlarged to a scale of 1:250,000 was used to visually identify flooded areas. Inundated areas were delineated on overlays keyed to 1:250,000 U.S. Geological Survey topographic quadrangles. Tabular data identifying acres flooded, according to land use type, were derived by merging the flood map overlays with computerized 1972 land use data. Approximately 1.12 million acres of the state were inundated by flood waters. The total acreage and land use types affected by flooding were determined within 72 hours from the time the flood areas were imaged. Flooded maps were prepared for 26 parishes. Field observations were made by Louisiana Cooperative Extension Service county agents in order to determine the accuracy of parish flood maps and flood acreage figures by land use type. Results indicated that this was a fast, accurate, and relatively inexpensive method of compiling flood data for disaster planning and postflood analysis.  相似文献   
36.
The United States National Aeronautics and Space Administration is an important real and potential source of global environmental data. This paper describes some of its capabilities as they relate to the their R&D and their data centers.  相似文献   
37.
This paper examines possible ozone-induced foliar injury to ponderosa pine areas in the Rincon Mountains of southern Arizona from 1972 to 1992. Spatiotemporal differences in a satellite-derived vegetation index (VI) are examined with respect to antecedent moisture conditions, temporal variations in ozone exposure levels, and measured foliar injury values from 1985. Seasonal ozone exposure levels (SUM60 and W126) increased from 1982 to 1998 and were significantly correlated (r = 0.49 and 0.53, α= 0.05) with annual population totals in the Tucson area. Extensive masking of satellite images from 1972, 1986, and 1992 resulted in two optimal change detection areas, with one site, TVWMica, exposed mostly to the Tucson air pollution plume, while the other site, EMica, was more protected from Tucson-derived pollution. An overall increase in VI from 1972 to 1992 at both sites appears to have been caused by an increase in moisture availability. Larger foliar injury values in 1985 were associated with a smaller increase in VI (i.e., a smaller increase in green leaf biomass) from 1972 to 1986. From 1972 to 1986 and from 1986 to 1992, VI values at TV/WMica increased at a slower rate compared to those at EMica. The reduced increase in “green-up” may have been caused partially by ozone-induced foliar injury and resulting decreases in green leaf biomass. However, these spatial differences in VI values may have also been caused by a number of other factors. Results nevertheless reveal the strong possibility of distinct, topographically based, spatial variations in ozone-induced foliar injury within the Rincons.  相似文献   
38.
ABSTRACT: Reservoir water quality is traditionally monitored and evaluated based on field data. Collecting and analyzing field water quality data are costly and time consuming tasks, and whether a limited number of field data truly characterize the spatial variation of the trophic state within a vast water body is often disputed. In this study we utilize Landsat TM data to estimate the water quality and trophic state of the Te‐Chi reservoir in Central Taiwan. A modified multi‐parameter model of Carlson's trophic state index (TSI) was developed for the Te‐chi reservoir. Water quality parameters (concentration of chlorophyll‐a, total phosphorous measurement, and secchi disk depth) required by the model are found to have high correlations with combinations of TM bands. Therefore, TM data are used to map the trophic state of the reservoir. TM‐derived TSI maps of the reservoir reveal that, in summer, the trophic state in the reservoir generally improves from upstream to downstream and that zones of distinct trophic state exist. A trophic state index based on secchi disk depth may give erroneous values in the upstream section of the reservoir pool due to high sediment concentration in the reservoir inflow. We conclude that the Te‐Chi reservoir is eutrophic or worse in summer and meso‐eutrophic in winter. Implementation of best management practices to reduce nonpoint source pollution in the upstream watershed is highly recommended. This study demonstrates the capability of mapping the trophic state in impounded water bodies using the Landsat TM data.  相似文献   
39.
为了准确核算厦门市绿色植被降温服务功能,收集厦门市2010年和2015年18个气象站点数据,采用30 m空间分辨率Landsat卫星数据和250 m空间分辨率、16 d合成的MODIS植被指数产品,在已有基于能量平衡估算模型的基础上,通过考虑植被覆盖及降温服务时长,构建了绿色植被降温服务功能核算的改进模型,并对厦门市2010—2015年绿色植被降温服务功能时空动态特征进行分析.结果表明:①改进模型能够较为准确且合理地描述绿色植被降温服务功能的时空变化特征.②厦门市北部山区由于高植被覆盖度降温服务功能高于南部城市建成区,而城市建成区中的城市绿地也具有明显的降温作用.③2010—2015年各区降温服务功能实物量整体呈增加趋势.其中,同安区降温服务功能实物量变化量最多,为166.12×106 kW·h;湖里区变化量最少,为9.72×106 kW·h;其余各区变化量都在40×106~75×106 kW·h范围内.④森林在降温服务中贡献最大,达60%以上.相比2010年,2015年降温服务功能实物量除了灌木林地变化率为-4.29%外,其余绿色植被类型均呈增长趋势,如森林和农田的增长率为11.97%、14.23%,草地和城市绿地的增长率为87.45%、92.11%.研究显示,厦门市2010—2015年的绿色植被降温服务功能总体呈明显增强趋势,其中城市绿地的降温服务功能增强尤为明显.   相似文献   
40.
张毅博  张运林  査勇  施坤  周永强  刘明亮 《环境科学》2015,36(12):4420-4429
光合有效辐射(photosynthetically active radiation,PAR)是指可以被植物利用并进行光合作用的那部分太阳辐射,其进入湖水后受光学组分(悬浮颗粒、有色可溶性有机物和浮游植物)的吸收和散射作用发生衰减,对湖泊生物的密度和分布具有重要影响.本研究构建了基于Landsat 8影像数据的较为清洁的新安江水库PAR漫衰减系数的遥感估算模型,进而分析其时空分布特征及主要影响因素.结果表明,利用Landsat 8的第二、三和第八波段构建的多元回归模型能够得到较为准确的估算结果,模型决定系数为0.87.利用独立样本对构建的模型验证,预测值和实测值相对误差绝对值均值为9.16%,均方根误差为0.06 m~(-1),由此可见利用Landsat 8数据的3个波段,采用多元回归模型能够较好地估算较清洁水体的PAR漫射衰减系数.基于14景Landsat 8影像发现,新安江水库PAR漫射衰减系数季节差异性明显,秋季(9~11月)和夏季(6~8月)PAR漫射衰减系数较高,分别为(0.82±0.60)m~(-1)和(0.77±0.41)m~(-1),而冬季(12~次年2月)和春季(3~5月)PAR漫射衰减系数相对较低,分别为(0.56±0.50)m~(-1)和(0.40±0.45)m~(-1).新安江水库PAR漫射衰减系数空间差异性显著,全湖PAR漫射衰减系数变化范围为(0.002~13.86)m~(-1),均值为(0.64±0.49)m~(-1).漫射衰减系数的季节变化主要是由季节性降雨和浮游植物季节性生长引起,空间差异性主要由外源河流输入和部分水域采砂过程导致悬浮物浓度变化引起.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号