首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   4篇
  国内免费   1篇
安全科学   20篇
环保管理   4篇
综合类   18篇
基础理论   20篇
污染及防治   21篇
评价与监测   2篇
社会与环境   5篇
灾害及防治   5篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   9篇
  2010年   3篇
  2009年   7篇
  2008年   9篇
  2007年   7篇
  2006年   7篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
21.
中国全新世气候变化研究进展   总被引:1,自引:1,他引:1  
徐海 《地球与环境》2001,29(2):9-16
全新世气候变化研究是古气候研究的一个重点。中国全新世气候变化的研究也是全球变化研究中重要的一部分。大量的研究工作为恢复中国全新世气候做了重大贡献。中国地形地貌复杂 ,又处在具有复杂时空变率的东亚季风控制范围内 ,这使得不同的研究工作者在一些问题上存在意见分歧。比较统一的意见是 :中国全新世始于约 10 .5kaBP ;在约 9~ 8kaBP左右为一段降温期 ;7~ 4kaBP为一段温暖期 ,通常称之为全新世大暖期 ;大约 3kaBP左右开始降温 ,至近代才又升温 ;约 130 0aA .D .左右进入小冰期 ,到 185 0aA .D .左右结束 ,其间又有几次比较明显的温度振荡。 185 0aA .D .至今为温度的上升期。对于气候变动的驱动因素 ,不同的学者看法不一 ;从长时间尺度看 ,太阳辐射变化是气候变化的主要驱动力。  相似文献   
22.
The age at which worker honey bees begin foraging varies under different colony conditions. Previous studies have shown that juvenile hormone (JH) mediates this behavioral plasticity, and that worker-worker interactions influence both JH titers and age at first foraging. These results also indicated that the age at first foraging is delayed in the presence of foragers, suggesting that colony age demography directly influences temporal division of labor. We tested this hypothesis by determining whether behavioral or physiological development can be accelerated, delayed, or reversed by altering colony age structure. In three out of three trials, earlier onset of foraging was induced in colonies depleted of foragers compared to colonies depleted of an equal number of bees across all age classes. In two out of three trials, delayed onset of foraging was induced in colonies in which foragers were confined compared to colonies with free-flying foragers. Finally, in three out of three trials, both endocrine and exocrine changes associated with reversion from foraging to brood care were induced in colonies composed of all old bees and devoid of brood; JH titers decreased and hypopharyngeal glands regenerated. These results demonstrate that plasticity in age-related division of labor in honey bee colonies is at least partially controlled by social factors. The implications of these results are discussed for the recently developed ‘‘activator-inhibitor” model for honey bee behavioral development. Received: 8 November 1995/Accepted after revision: 10 May 1996  相似文献   
23.
对阿拉善荒漠地区不同时间(2005年、2002年、1999年和1980年)禁牧围封梭梭生态特征进行了对比研究。生态特征分析表明7年封育梭梭恢复效果最好,梭梭盖度达到了22.6%,密度增加到每公顷594株,生物量提高到每公顷12.01吨。而25年围封梭梭林密度、盖度和生物量均低于7年封育。年龄结构分析表明1年、4年和7年禁牧封育梭梭均发展趋势,而25年禁牧封育梭梭呈现衰退趋势。动态模拟分析表明通过禁牧封育,干旱区退化梭梭林恢复最佳周期14年,生物量达15.3吨/公顷,盖度28%,密度高达770彬公顷。  相似文献   
24.
The composition of the herbaceous cover and the seed bank of old and recent hedge banks in Brittany were studied and compared. Concentration method was used for seed bank samples. Grimes plant strategies were used to explain observed patterns. The analysis of the seed bank of these hedge banks showed that the species richness and diversity differed in relation to the date of construction of the hedge banks. The seed banks of recent hedge banks were richer and more diversified than those of old hedge banks. Differences in the floristic composition of the established plant cover between the recent and old hedge banks were determined by multivariate analyses. The species exclusively found in the seed bank and in the herb cover of recent hedge banks were mainly grassland species, whereas the species that only occurred on old hedge banks tended to be woodland species. The floristic composition of the two compartments (established vegetation and seed bank) was very different. A multivariate analysis revealed that the difference between the composition of the seed banks of recent and old hedge banks was less than that between the composition of the established vegetation and seed bank of hedge banks of the same age. Both seed bank and vegetation of recent hedge banks were dominated by ruderal species, whereas old hedge vegetation was dominated by stress-tolerant woodland species, indicating that mechanically constructed hedge banks may impose limitations on colonization by late woodland species.  相似文献   
25.
Dimethyl sulphide (DMS) and carbon monoxide (CO) are climate-relevant trace gases that play key roles in the radiative budget of the Arctic atmosphere. Under global warming, Arctic sea ice retreats at an unprecedented rate, altering light penetration and biological communities, and potentially affect DMS and CO cycling in the Arctic Ocean. This could have socio-economic implications in and beyond the Arctic region. However, little is known about CO production pathways and emissions in this region and the future development of DMS and CO cycling. Here we summarize the current understanding and assess potential future changes of DMS and CO cycling in relation to changes in sea ice coverage, light penetration, bacterial and microalgal communities, pH and physical properties. We suggest that production of DMS and CO might increase with ice melting, increasing light availability and shifting phytoplankton community. Among others, policy measures should facilitate large-scale process studies, coordinated long term observations and modelling efforts to improve our current understanding of the cycling and emissions of DMS and CO in the Arctic Ocean and of global consequences.  相似文献   
26.
Human activities are changing the Arctic environment at an unprecedented rate resulting in rapid warming, freshening, sea ice retreat and ocean acidification of the Arctic Ocean. Trace gases such as nitrous oxide (N2O) and methane (CH4) play important roles in both the atmospheric reactivity and radiative budget of the Arctic and thus have a high potential to influence the region’s climate. However, little is known about how these rapid physical and chemical changes will impact the emissions of major climate-relevant trace gases from the Arctic Ocean. The combined consequences of these stressors present a complex combination of environmental changes which might impact on trace gas production and their subsequent release to the Arctic atmosphere. Here we present our current understanding of nitrous oxide and methane cycling in the Arctic Ocean and its relevance for regional and global atmosphere and climate and offer our thoughts on how this might change over coming decades.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01633-8.  相似文献   
27.
介绍了1994年我国环保系统106个科研机构的科研人员年龄构成的现状?随着人事制度的改革,涌现出一批年轻的学科带头人,但是年龄老化的问题仍比较严重?分析了造成目前环保科研队伍年龄构成不太理想的原因,并对改变这种状况提出建设性意见   相似文献   
28.
In the Arctic environment, the fluid temperature in the pipeline can drop below the freezing point of water, which causes wax and ice to form on the pipeline surface. Solid formation on the pipeline surface can lead to flow assurance and process safety issues, such as blockage of the pipeline, pipeline component failure, and release of hazardous liquid. Remediating the plugging requires a shutdown of pipeline operation, which incurs tremendous cost and delays the entire production system. In order to prevent blockage, the pigging operation can be used to remove the deposits on the pipeline surface on a regular interval. Ice and wax depositions in the pipeline are a slow process. However, if the deposition grows too thick, pipeline blockage can still occur after pigging operation. So, ice and wax deposition rates are required to be estimated accurately. This paper investigates ice and wax deposition rates in a 90,000 m pipeline. A fundamental model for both ice and wax deposition is proposed using the first principles of heat and mass transfer.  相似文献   
29.
The recovery effectiveness for oil spills in ice conditions depends on a complex system and has not been studied in depth, especially not from a system risk control perspective. This paper aims to identify the critical aspects in the oil spill system to enable effective oil spill recovery. First, a method is developed to identify critical elements in a Bayesian Network model, based on an uncertainty-based risk perspective. The method accounts for sensitivity and the strength of evidence, which are assessed for the different Bayesian Network model features. Then, a Bayesian Network model for the mechanical oil spill recovery system is developed for the Finnish oil spill response fleet, contextualized for representative collision accident scenarios. This model combines information about representative sea ice conditions, ship-ship collisions and their associated oil outflow, the oil dispersion and spreading in the ice conditions, and the oil spill response and recovery of the fleet. Finally, the critical factors are identified by applying the proposed method to the developed oil spill response system model. The identified most critical system factors relates collision aspect: Forcing Representative Scenario, Representative Accident Location, Impact Speed, Impact Location, Impact Angle and response aspect: Response Vessel Operability.  相似文献   
30.
The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号