首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7002篇
  免费   512篇
  国内免费   1698篇
安全科学   654篇
废物处理   805篇
环保管理   1210篇
综合类   4570篇
基础理论   551篇
环境理论   3篇
污染及防治   1129篇
评价与监测   137篇
社会与环境   97篇
灾害及防治   56篇
  2024年   9篇
  2023年   55篇
  2022年   98篇
  2021年   144篇
  2020年   175篇
  2019年   130篇
  2018年   135篇
  2017年   171篇
  2016年   216篇
  2015年   234篇
  2014年   371篇
  2013年   452篇
  2012年   516篇
  2011年   517篇
  2010年   404篇
  2009年   487篇
  2008年   356篇
  2007年   596篇
  2006年   680篇
  2005年   514篇
  2004年   445篇
  2003年   426篇
  2002年   365篇
  2001年   324篇
  2000年   278篇
  1999年   266篇
  1998年   182篇
  1997年   147篇
  1996年   114篇
  1995年   100篇
  1994年   87篇
  1993年   60篇
  1992年   37篇
  1991年   27篇
  1990年   13篇
  1989年   7篇
  1988年   5篇
  1987年   9篇
  1986年   7篇
  1984年   9篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1977年   3篇
  1974年   3篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
排序方式: 共有9212条查询结果,搜索用时 15 毫秒
601.
催化湿式氧化预处理造纸黑液   总被引:2,自引:1,他引:1  
采用连续式固定床反应器,利用自制稀土类复合金属氧化物催化剂对草浆造纸黑液进行了催化湿式氧化(CWAO)预处理研究.通过正交实验确定了最佳工艺条件为:进水COD 40 800 mg/L,空速0.8h-1,反应温度260℃,反应压力6.5 MPa.在此最佳条件下进行实验,COD去除率达90%.经CWAO工艺处理后,草浆造纸...  相似文献   
602.
微波诱导催化技术以其快速、高效和无二次污染等特点,日益受到环保研究者的重视。目前,微波诱导催化技术已在大气污染控制、水污染控制及固体废弃物处理与处置等环境治理领域取得了显著效果。阐述了微波诱导催化技术的基本原理、催化反应的催化剂和载体及催化反应的机制,归纳了微波诱导催化技术在环境治理中的应用现况及实例,分析了微波诱导催化技术在实际应用中存在的问题,并提出相应的解决措施,最后对微波诱导催化技术在环境治理领域中的进一步应用进行了展望。  相似文献   
603.
采用正交实验方法,确定了钠基蒙脱土吸附亚甲基蓝染料的最佳吸附条件.采用试剂再生法、超声波法、高温焙烧法、氢氧化钠—高温焙烧结合法对钠基蒙脱土吸附亚甲基蓝进行解吸.用扫描电子显微镜照片和红外光谱对吸附前后的钠基蒙脱土的结构进行表征.实验结果表明:在亚甲基蓝溶液pH为10、吸附温度为60℃、亚甲基蓝质量浓度为1 300 m...  相似文献   
604.
以Ti3AlC2为原料,采用HF刻蚀工艺制备出12种Ti3C2纳米层状材料,对其形貌进行了表征,并考察了以其作为光催化剂对废水中Cr(Ⅵ)的处理效果。实验结果表明:HF体积分数为80%、刻蚀时间为48 h时得到的MX-80-48的形貌较好;MX-80-48具有类似石墨烯的二维层状结构,纳米层厚度约20~50 nm,孔径2~10 nm,比表面积14.8 m2/g,在400~700 nm可见光范围内表现出强烈的吸光性;当Cr(Ⅵ)的初始质量浓度为40.00 mg/L、MX-80-48投加量为200 mg/L、pH=2、反应时间4 h(暗反应1 h+光照3 h)时,Cr(Ⅵ)去除率可达100%。  相似文献   
605.
Subgrade biogeochemical reactors (SBGRs) are an in situ remediation technology shown to be effective in treating contaminant source areas and groundwater hot spots, while being sustainable and economical. This technology has been applied for over a decade to treat chlorinated volatile organic compound source areas where groundwater is shallow (e.g., less than approximately 30 feet below ground surface [ft bgs]). However, this article provides three case studies describing innovative SBGR configurations recently developed and tested that are outside of this norm, which enable use of this technology under more challenging site conditions or for treatment of alternative contaminant classes. The first SBGR case study addresses a site with groundwater deeper than 30 ft bgs and limited space for construction, where an SBGR column configuration reduced the maximum trichloroethene (TCE) groundwater concentration from 9,900 micrograms per liter (μg/L) to <1 μg/L (nondetect) within approximately 15 months. The second SBGR is a recirculating trench configuration that is supporting remediation of a 5.7‐acre TCE plume, which has significant surface footprint constraints due to the presence of endangered species habitat. The third SBGR was constructed with a new amendment mixture and reduced groundwater contaminant concentrations in a petroleum hydrocarbon source area by over 97% within approximately 1 year. Additionally, a summary is provided for new SBGR configurations that are planned for treatment of additional classes of contaminants (e.g., hexavalent chromium, 1,4‐dioxane, dissolved explosives constituents, etc.). A discussion is also provided describing research being conducted to further understand and optimize treatment mechanisms within SBGRs, including a recently developed sampling approach called the aquifer matrix probe.  相似文献   
606.
尹先清  陈文娟  靖波  刘倩  杨航 《化工环保》2017,37(4):377-382
采用支持向量机(SVM)算法,将Box-Behnken设计法与支持向量回归算法(SVR)实验参数优化软件相结合,优化电化学去除油田污水COD的工艺参数。通过量子粒子群算法对SVM算法参数进行优化,从建立的回归模型中找到工艺参数的全局最佳点:电解时间60 min,电解电流3 A,三维电极填充料中石英砂质量695 g。模型得到的COD理论最优去除率为92.48%,验证实验得到的COD去除率为91.43%。  相似文献   
607.
综述了高铁酸盐去除水中藻类、细菌、烃类衍生物、药品、农药、染料等有机污染物的国内外最新研究进展,并对高铁酸盐的高效利用进行了探讨。高铁酸盐可破坏藻类和细菌细胞的完整性,将大分子芳香烃衍生物氧化为低毒的小分子中间体,将小分子链烃衍生物矿化,破坏药品、农药及染料的不饱和双键。无机矿物在溶液中负载高铁酸盐或将高分子有机物与固体高铁酸盐混合造粒,将是高铁酸盐高效利用领域的研究热点。  相似文献   
608.
陈文娟  靖波  张健  孟凡雪 《化工环保》2017,37(4):400-403
为解决传统电化学方法在含聚污水处理时电极板消耗严重、絮渣量大的问题,通过改进电极板材料、组合数及结构等,研究适度降解-除油一体化电化学技术,在降低渣泥量的同时保证处理效果。实验结果表明:最佳电极板组合为"网状惰性金属复合物极板(阳)-网状铝极板(阴)-网状铝极板(阴)-网状惰性金属复合物极板(阳)";在电解电流为4.0 A、极板间距为8.0 cm、面体比(电极板面积与处理污水量的比值)为2/17 cm~2/mL、电解时间为30 min的最佳处理条件下,几乎无絮渣产出,含聚污水的浊度去除率为93.3%、聚合物降解率为92.0%、除油率为95.0%,展现了优良的处理效果。  相似文献   
609.
This paper aims to reveal the heat transfer mechanism of low-temperature phase change material (PCM) and design PCM heat storage device in building heating environment. Firstly, low-temperature binary PCMs of lauric acid and stearic acid are prepared, and their thermal properties are investigated by DSC. Then, shell and tube latent heat thermal energy storage units are conducted, and heat transfer experiments are carried out to analyze the heat transfer mechanism of PCM. The results demonstrate that natural convection plays an important role in heat transfer process, and the heat storage efficiency of PCMs can be significantly enhanced by increasing the fin width and improving the inlet heat transfer fluid (HTF) temperature. Furthermore, some proposals are put forward to guide the design of PCM storage device in building heating environment.  相似文献   
610.
This article investigates the impact that the electricity tariff reform is likely to have on investments in renewable energies (i.e., photovoltaics) and the adoption of energy efficiency measures (i.e., installation of heat pumps and efficient home appliances) in the residential market in Italy. The study develops detailed cost comparisons and simulations considering two different investment scenarios (before and after the reform) to conclude that the reform will: (i) have a negative impact on investments in photovoltaic systems; (ii) favor the adoption of energy efficiency measures, such as efficient home appliances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号