首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   21篇
  国内免费   82篇
安全科学   5篇
废物处理   1篇
环保管理   10篇
综合类   189篇
基础理论   20篇
污染及防治   7篇
评价与监测   17篇
社会与环境   17篇
灾害及防治   7篇
  2023年   4篇
  2022年   14篇
  2021年   19篇
  2020年   13篇
  2019年   19篇
  2018年   21篇
  2017年   17篇
  2016年   14篇
  2015年   21篇
  2014年   18篇
  2013年   9篇
  2012年   13篇
  2011年   13篇
  2010年   9篇
  2009年   22篇
  2008年   9篇
  2007年   15篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
排序方式: 共有273条查询结果,搜索用时 31 毫秒
61.
吴宇宏  杜宁  王莉  蔡宏  周彬  吴磊  敖逍 《环境科学》2021,42(12):5602-5615
高分辨率PM2.5空间分布数据对动态监测和控制PM2.5污染具有重要意义.选取Himawari-8气溶胶光学厚度(AOD)、ERA5气象再分析资料、DEM、土地利用数据、夜光遥感数据、增强型植被指数和人口数据等作为估算变量,使用改进的重采样法进行数据匹配,并提出改进的线性混合模型(iLME)结合地理智能随机森林(Geoi-RF)构建组合模型估算PM2.5浓度.结果表明:①在选取的估算变量中,气溶胶光学厚度、气压、温度、相对湿度和边界层高度是影响2016年四川省PM2.5浓度的重要因素,其相关系数分别为0.65、0.58、0.55、0.54和0.35.②iLME+Geoi-RF模型精度相较其他模型有较大提升,模型拟合Rl2、RMSR 和 MAE 分别为0.98、3.25 μg·m-3和 1.98 μg·m-3,交叉验证 R2、RMSR 和 MAE 分别为0.89、7.95 μg·m-3和4.81μg·m-3.该模型可获取更高精度的四川省PM2.5时空分布特征,为区域空气质量评估、人体暴露风险评价和环境污染治理提供更加合理地科学参考.③2016年四川省PM2.5浓度存在显著的季节性差异,各季节PM2.5浓度大小关系为:冬季>秋季>春季>夏季.2016年四川省月均PM2.5浓度总体上呈先降后升的"V"型趋势,最小值在6月,最大值在12月,8月和11月有微小起伏.在空间分布上四川省PM2.5浓度总体上呈东高西低和局部污染程度较高的特点,高值区主要分布在城市快速发展和人口密集的东部地区,低值区主要分布在经济发展落后和人口稀疏的西部地区.④虽然不同模型估算出的PM2.5浓度整体分布基本一致,但iLME+Geoi-RF模型能更准确有效地估算本研究区污染的空间分布.  相似文献   
62.
许凯  余添添  孙姣姣  袁兆祥  秦昆 《环境科学》2017,38(12):4905-4912
以武汉市为例,利用多源遥感数据研究城市"源""汇"景观格局与大气霾污染的相关关系.首先,基于武汉市Landsat8数据的地表覆盖分类结果,计算不同尺度下地表覆盖的整体异质性景观指数,选择异质性最大的尺度作为"源""汇"景观分析的最优尺度;在此基础上,用MODIS数据的气溶胶光学厚度(AOD)产品作为大气霾污染程度的度量,基于自相关性较小的"类别层"景观指数,使用地理加权回归分析模型对"源""汇"景观与AOD进行局部回归分析,并在工业区、商业区和居民区3种功能区内分析建筑物对大气霾污染影响的差异.结果表明:6 km是本文分析的最优尺度;大气霾污染的"源"景观为建筑物,"汇"景观为灌木和林地;减小"源"景观面积所占比例、增大其破碎化程度、"源""汇"穿插均匀分布,可以有效减小气溶胶光学厚度,降低大气霾污染;对于武汉市来说,其大气霾污染的主要来源为中心城区的商业区和居民区,即来自于市民生活.针对中心城区要发挥其经济、交通等功能,已有的建设用地不宜大面积改动这一现状,可以采取小幅度优化措施,而对于非建成区可采取建前合理规划"源""汇"景观空间分布的措施.  相似文献   
63.
随着我国经济、工业化、城市化进程迅速发展,PM_(2.5)污染在中国已经成为一个极端的环境和社会问题,并引起广泛关注.采用新技术估算的地表PM_(2.5)质量浓度,收集并处理了遥感反演的气溶胶光学厚度(AOD),气象数据,其他地理数据和污染物排放数据,采用贝叶斯最大熵(BME)结合地理加权回归(GWR)来分析2015年冬季的PM_(2.5)暴露在我国东部大范围区域的时空变异特征.结果表明,BME模型的十折交叉验证结果的决定系数R~2为0.92,均方根误差(RMSE)为8.32μg·m~(-3),平均拟合误差(MPE)为-0.042μg·m~(-3),平均绝对拟合误差(MAE)为4.60μg·m~(-3),与地理加权回归模型的结果相比(R~2=0.71,RMSE=15.68μg·m~(-3),MPE=-0.095μg·m~(-3),MAE=11.14μg·m~(-3)),BME的预测结果有极大的提高.空间上,PM_(2.5)高浓度地区主要集中在华北、长江三角洲、四川盆地,低浓度地区主要集中在中国的最南部如珠江三角洲和云南的西南部;时间上,不同月份的研究区域PM_(2.5)空间分布所有差别,2015年的12月、2016年1月PM_(2.5)污染最为严重,2015年的11月,2016年的2月污染相对较低.  相似文献   
64.
利用2006~2017年Aqua-MODIS C006气溶胶日产品数据,选取新疆地区11个代表性城市进行分类,分析典型城市的AOD近12a变化趋势及特征.结果表明:2006~2017年间,除乌鲁木齐市AOD小幅度上升外,其余10个城市AOD均出现不同程度下降,北疆城市年均降幅较小,吐鲁番市12a间AOD下降了0.13,为哈密、焉耆等同纬度城市群中的最大降幅,南疆城市AOD年均降幅最为显著,阿克苏、喀什、和田和若羌地区AOD分别下降了0.18、0.16、0.16和0.09;AOD空间分布上,南疆为AOD峰值中心,年均值达0.50以上,北疆和东疆地区AOD年均值维持在0.20~0.22;同时,AOD具有典型的季节变化特征,春季为AOD峰值季节,夏季次之,秋、冬季AOD较低;此外,12a间新疆全区AOD出现不同程度降低,其中南疆沙尘源区为AOD下降的典型区域,减少区域呈现出沿昆仑山脉自南向北的带状分布.  相似文献   
65.
利用陕西省地面气象观测站观测资料、中国国家统计局统计资料、美国NASA的MODIS气溶胶光学厚度(AOD)资料以及NCEP/NCAR月平均再分析资料,对1980~2016年陕西省冬季霾日数的时空变化特征及可能原因进行了分析,结果表明:(1)1980~2016年冬季陕西省平均霾日数为12d左右,并且伴有明显的年代际变化;其中1980~2012年冬季霾日数波动明显,1980~1993年偏多,1994~2012年偏少,2013年之后霾日数增加明显.(2)1980~2016年冬季陕西的霾日数有显著的区域差异.关中地区的霾日数最多,平均每年大于18d;陕南地区次之,年平均霾日数为10d左右;陕北地区最少,平均霾日数仅3d左右.陕北、关中、陕南3大区域冬季的霾日数均在2013年后出现了明显的增多.(3)2000~2016年冬季MODIS卫星监测的陕西AOD在关中咸阳、西安、渭南以及汉中南部和安康南部存在明显的高值区,大于0.4,其中关中气溶胶高值区域与关中地区霾日数大值区域有很好的对应关系.(4)2013~2016年冬季我国中东部的对流层低层的东风异常是向陕西关中地区输送气溶胶的有利条件,是霾天气的产生原因之一;2013~2016年陕西冬季对流层低层存在一个明显的位温梯度增大的区域,是不利于霾向高空扩散的大气层结条件,是霾日数明显增加的另一个原因.  相似文献   
66.
为了准确核算厦门市绿色植被降温服务功能,收集厦门市2010年和2015年18个气象站点数据,采用30 m空间分辨率Landsat卫星数据和250 m空间分辨率、16 d合成的MODIS植被指数产品,在已有基于能量平衡估算模型的基础上,通过考虑植被覆盖及降温服务时长,构建了绿色植被降温服务功能核算的改进模型,并对厦门市2010—2015年绿色植被降温服务功能时空动态特征进行分析.结果表明:①改进模型能够较为准确且合理地描述绿色植被降温服务功能的时空变化特征.②厦门市北部山区由于高植被覆盖度降温服务功能高于南部城市建成区,而城市建成区中的城市绿地也具有明显的降温作用.③2010—2015年各区降温服务功能实物量整体呈增加趋势.其中,同安区降温服务功能实物量变化量最多,为166.12×106 kW·h;湖里区变化量最少,为9.72×106 kW·h;其余各区变化量都在40×106~75×106 kW·h范围内.④森林在降温服务中贡献最大,达60%以上.相比2010年,2015年降温服务功能实物量除了灌木林地变化率为-4.29%外,其余绿色植被类型均呈增长趋势,如森林和农田的增长率为11.97%、14.23%,草地和城市绿地的增长率为87.45%、92.11%.研究显示,厦门市2010—2015年的绿色植被降温服务功能总体呈明显增强趋势,其中城市绿地的降温服务功能增强尤为明显.   相似文献   
67.
MODIS MOD16蒸散发产品在中国流域的质量评估   总被引:8,自引:2,他引:6  
利用地面观测降水数据、流量数据,以及重力卫星(GRACE)观测的与全球陆面数据同化系统(GLDAS)模拟的流域蓄水量变化数据,基于流域水量平衡原理,从年与月两个时间尺度分析了MODIS全球蒸散发产品(MOD16)在中国不同流域的一致性及其时空特征。结果表明:1)年尺度上,MOD16/ET在中国流域(除松花江流域)与基于水量平衡估算的流域实际ET(WBET)相比呈现高估,且在不同集水区高估程度不同,与流域实际ET的差异从北方的松花江流域、黄河流域到南方的长江流域有从小到大的特点;2)月尺度上,MOD16/ET与WBET相比,存在低值区(20 mm/月)高估、高值区(20 mm/月)低估的特点;在蒸散发过程较弱的11月到次年3月,MOD16/ET产品在中国流域存在普遍性高估;而在其他月份,MOD16/ET与WBET的一致性因流域而异;3)MOD16/ET与WBET的一致性在中国不同流域存在地域性差异,总体上在外流区的一致性优于内流区,在北方松花江流域的一致性优于南方的长江流域。  相似文献   
68.
A severe dust event occurred from April 23 to April 27, 2014, in East Asia. A state-of-the-art online atmospheric chemistry model, WRF/Chem, was combined with a dust model, GOCART, to better understand the entire process of this event. The natural color images and aerosol optical depth (AOD) over the dust source region are derived from datasets of moderate resolution imaging spectroradiometer (MODIS) loaded on a NASA Aqua satellite to trace the dust variation and to verify the model results. Several meteorological conditions, such as pressure, temperature, wind vectors and relative humidity, are used to analyze meteorological dynamic. The results suggest that the dust emission occurred only on April 23 and 24, although this event lasted for 5 days. The Gobi Desert was the main source for this event, and the Taklamakan Desert played no important role. This study also suggested that the landform of the source region could remarkably interfere with a dust event. The Tarim Basin has a topographical effect as a “dust reservoir” and can store unsettled dust, which can be released again as a second source, making a dust event longer and heavier.  相似文献   
69.
利用AERONET观测网数据,结合MODIS(中分辨率成像光谱仪)及Himawari-8(新一代地球同步气象卫星)的气溶胶产品分析了亚洲41个站点2015—2016年细模态气溶胶光学特性.结果表明,MODIS和Himawari-8反演气溶胶细模态比例(FMF)及细模态气溶胶光学厚度(fAOD)落在误差区间EE(期望误差)内的比例均不超过80%,其中8个典型站点则不超过50%,总体上MODIS要优于Himawari-8,但与AERONET地基观测资料相比还存在一定的误差.因此,需要进一步研究反演方法,提升地表反射率的确定精度,从而提高卫星遥感反演精度.通过季节平均的比较,发现春、夏、秋、冬四季MODIS和Himawari-8的反演值均有所低估,MODIS fAOD各季节平均偏差相对较小.Himawari-8 FMF秋季在Dhaka_University站的平均偏差较大,MODIS FMF春、冬季的平均偏差最大值相对较大,夏、秋季则相对较小;对于同一站点在相同季节均为Himawari-8 fAOD偏差较大,并且MODIS fAOD各季节的平均偏差最大值均小于Himawari-8 fAOD的偏差值.同时,利用卫星观测分析了亚洲地区FMF和fAOD年均及季节平均分布特征,发现MODIS和Himawari-8 FMF年均分布高值区主要位于华北平原、东北平原、四川盆地和中南半岛,MODIS fAOD年均分布高值区主要位于中南半岛,Himawari-8 fAOD年均值则普遍较低.MODIS FMF和fAOD季节平均分布呈现出夏秋高、春冬低的趋势,Himawari-8 FMF和fAOD季节平均分布则呈现出春秋高、夏冬低的特征,高值区的位置和量值均有明显的季节变化.  相似文献   
70.
利用卫星遥感反演气溶胶光学厚度(AOD)已成为获取宏观、连续空气污染信息的一种有效手段.通过构建AOD-PM_(2.5)的关联模型是实现空间范围内PM_(2.5)监测的主要方法,而气象要素是该模型中的重要输入参数,直接影响到模型模拟的精度.当前诸多模型多采用地面气象要素,缺乏对于不同高度气象要素及其变化对构建AOD-PM_(2.5)关联模型的影响研究.本文以淮河流域五省为例,在实测地面气象资料的基础上,利用再分析气象资料,考虑了从地面至高空不同高度处的气象要素及其垂直变化,运用多元逐步回归方法,对比了地面与不同高度气象要素及其变化量对AOD-PM_(2.5)关联模型的贡献程度.结果表明:①AOD-PM_(2.5)关联模型在不同站点、不同季节的差异仍较为明显,不同高度及随高度变化的气象要素对提高春季AOD-PM_(2.5)关联模型的精度有较显著影响;②考虑了不同高度气象要素及垂直变化的多元逐步回归线性模型的表现优于仅考虑地面气象要素的模型,尤其是春季的改善较明显,RMSE降幅达到近43%;③基于地理加权回归方法的AOD-PM_(2.5)关联模型的估算结果略优于多元逐步回归线性模型.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号