首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
  国内免费   19篇
安全科学   3篇
废物处理   1篇
环保管理   2篇
综合类   26篇
基础理论   7篇
污染及防治   20篇
评价与监测   1篇
社会与环境   2篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   6篇
  2012年   3篇
  2011年   5篇
  2009年   3篇
  2008年   6篇
  2007年   8篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  1998年   2篇
排序方式: 共有62条查询结果,搜索用时 275 毫秒
31.
采用海藻酸钙包埋固定化高效降解菌Methylobium petroleiphilum PM1降解水相中的甲基叔丁基醚(MTBE),考察了不同强化方法对凝胶颗粒机械强度和降解活性的影响.响应面结果表明,交联剂和培养基中Ca2+浓度分别为0.2 mol·L-1和1.38mmol·L-1,化学交联剂聚乙烯亚胺(PEI)浓度为...  相似文献   
32.
采用海藻酸钙包埋固定化高效降解菌Methylobium petroleiphilum PM1降解水相中的甲基叔丁基醚(MTBE),考察了不同强化方法对凝胶颗粒机械强度和降解活性的影响.响应面结果表明,交联剂和培养基中Ca2+浓度分别为0.2 mol·L-1和1.38mmol·L-1,化学交联剂聚乙烯亚胺(PEI)浓度为0.1%时,强化固定化细胞具有较高的降解活性.在此条件下,凝胶颗粒在24h内机械破碎率仅为5.98%,并能连续使用400 h以上,未出现颗粒溶解破碎现象,降解速率较为稳定.扫描电镜观察,PEI处理后的凝胶颗粒表面形成一层薄膜,能有效防止细胞泄漏,并能维持PM1细胞良好的生长繁殖.动力学分析表明,降解的限速步骤为生化反应,直径3 mm凝胶颗粒对底物的扩散限制最弱;而高浓度的PEI能引起严重的扩散限制现象.  相似文献   
33.
We review studies of the effects of low ambient ozone concentrations on morbidity that found a negative coefficient for ozone concentration. We call this a Paradoxical Ozone Association (POA). All studies were in regions with methyl ether in gasoline. All but one study carefully controlled for the effects of other criterion pollutants, so the phenomenon cannot be attributed to them. One was in southern California in mid-summer when ozone levels are highest. Because ozone is created by sunlight, the most plausible explanation for a POA would be an ambient pollutant that is rapidly destroyed by sunlight, such as methyl nitrite (MN). A previously published model of engine exhaust chemistry suggested methyl ether in the fuel will create MN in the exhaust. MN is known to be highly toxic, and closely related alkyl nitrites are known to induce respiratory sensitivity in humans. Support for the interpretation comes from many studies, including three linking asthma symptoms to methyl tertiary butyl ether (MTBE) and the observation that a POA has not been seen in regions without ether in gasoline. We also note that studies in southern California show a historical trend from more significant to less significant ozone-health associations. The timing of those changes is consistent with the known timing of the introduction of gasoline oxygenated with MTBE in that region.  相似文献   
34.
单体同位素判识地下水MTBE衰减的研究进展   总被引:1,自引:0,他引:1  
有机单体同位素分析(CSIA)技术能够测定有机化合物单体中特定元素的稳定同位素比值,是一种发展中的新的技术方法。依靠CSIA提供的数据可以确定污染物MTBE来源,判识生物降解的途径,量化降解的程度。更重要的是,通过同位素动力学分馏模型的建立,CSIA技术可以作为评价和预测污染物衰减的程度和衰减时间的强有力工具。文章主要综述了应用CSIA技术解析污染物MTBE衰减过程的应用进展。  相似文献   
35.
地下水浅埋区某加油站特征污染物空间分布   总被引:2,自引:0,他引:2  
加油站渗漏污染地下水已经是一个世界性的问题。由于浅埋区加油站储罐与地下水密切接触,更加剧储罐的腐蚀。为揭示加油站渗漏的典型污染物石油烃(TPH)、苯系物(BTEX)、萘和甲基叔丁基醚(MTBE)在该水文地质条件下的迁移变化,在浅埋区某加油站开展了平、枯、丰水期的地下水监测工作。在水平分布上,TPH、BTEX、萘基本相似,均在加油岛附近形成高浓度区,而MTBE则更易随地下水流动而迁移,呈现出不同的污染晕。在垂直分布上,地下水的水位变动是污染物浓度分布的主要影响因素。  相似文献   
36.
主要介绍了含MTBE废水处理的工艺进展以及一些新方法、技术在实验以及生产实践中的应用 ,如氧化、气提、吸收、降解和自然衰减等 ,同时对各种方法的优缺点进行了评述 ,对未来的工艺进步做了展望  相似文献   
37.
MTBE (Methyl tert-Butyl Ether) is a fuel additive that replaced lead as an antiknock compound in internal combustion motors. Few years after its introduction, detectable levels of MTBE were found in various water bodies. MTBE has a very low taste and odor threshold and is a potential carcinogen. Another group of fuel derived toxic compounds that has been detected in water bodies is BTEX (Benzene, Toluene, Ethylbenzene and Xylene). Boating activity and allochthonous contributions from watersheds are the major sources of fuel derived pollutants in lakes. Their concentrations in lakes thus vary as a function of boating activity intensity, lake surface area and depth, weather and wind regime, land-use in the watershed, etc. The Sea of Galilee (Lake Kinneret) is the only recreational lake in Israel and an important freshwater source. In the current study, a sampling campaign was conducted in order to quantify MTBE and BTEX concentrations in Lake Kinneret, its marinas and its main contributing streams. In addition, a boating-use survey was performed in order to estimate MTBE and BTEX contribution of recreational boating. The sampling campaign revealed that, as expected, MTBE concentrations were higher than BTEX, and that near shore (i.e., marina) concentrations were higher than in-lake concentrations. Despite the clear contribution from boating, high MTBE concentrations were found following a major inflow event in winter, indicating the importance of the allochthonous contribution. The contribution from boating during summer, as measured indirectly by in-lake concentrations, is likely underestimated due to enhanced MTBE volatilization due to strong winds and high temperatures. May–September was found to be the main recreational boating season, with continued boating year round. On average, a single boat is active 23 d/y, with 84% of the watercrafts being active only during weekends and holidays. The survey further indicated that boats stay in the lake for 4.5 h on average, which conforms to the unique winds regime that limits afternoon activity due to high winds, and have an average fuel consumption of 14 L/h. The annual load of MTBE and BTEX from recreational boating in Lake Kinneret was estimated at 4430 and 6220 kg/y respectively.  相似文献   
38.
毕二平  张雅萍 《生态环境》2011,20(5):986-990
地下水中的甲基叔丁基醚(MTBE)自然衰减是生物与非生物过程综合作用的结果。在厌氧条件下,MTBE的同位素方面的证据表明:挥发、吸附和稀释等非生物过程中MTBE自然衰减的主要作用。在实际工作中,应结合当地水文地质条件,从主要环境因子来分析MTBE的自然衰减,从而判定MTBE自然衰减的速率和程度。在进行地下水中MTBE自然衰减研究时,应加强对于能反映MTBE自然衰减的"印迹"的研究。对这些"印迹"的确定将为野外监测MTBE的自然衰减提供理论上的依据。  相似文献   
39.
Contamination of groundwater by methyl-tert-butyl ether (MTBE) poses increasing problems to water companies. Here we demonstrate the feasibility of using a cylindrical, supported-catalyst reactor for photocatalytic degradation of MTBE in water. It was shown that photocatalytic degradation of MTBE follows pseudo first-order kinetics. The maximum reaction rate constant observed was 0.47 hr–1. The reaction rate increases linearly with increasing light intensity. It was also found that the reaction rate is linearly proportional to the ratio of catalyst surface area to volume of reactor. Complete degradation of MTBE was reached with an excess supply of oxygen.  相似文献   
40.
In the past decade, environmental forensics has emerged as a discipline directed toward determining parties liable for causing spills of contaminants into the environment. Such investigations, while geared toward determining the guilty parties in order to recover costs of the cleanup and remediation, require various questions to be addressed. These include determination of the nature of the product; Where did it come from?; Extent of weathering, if any; How long has it been there?; and Is it degrading naturally? Traditionally, these studies have been addressed through utilization of techniques such as gas chromatography (GC) and gas chromatography–mass spectrometry (GCMS). However, in recent years, stable isotopes, primarily determined through the use of combined gas chromatography–isotope ratio mass spectrometry (GCIRMS), have emerged as an equally important tool in environmental forensics. For relatively low molecular, volatile compounds such as MTBE, BTEX, or chlorinated solvents, the isotopes, primarily carbon and hydrogen, have been used extensively for evaluating the onset of natural attenuation. For larger molecules such as PCBs or PAHs, in which the effects of biodegradation on the isotope composition of these molecules is minimal, the isotopic fingerprints of the individual compounds can be used for correlation purposes. In this paper, a brief introduction to isotope geochemistry will be given, followed by a review of applications of stable isotopes to a variety of environmental problems. While the review may not necessarily be exhaustive, it will provide a comprehensive overview of areas where isotopes have been used and potential applications for the future. Most of the review is concerned with carbon and hydrogen isotopes, although a brief overview of the emerging area of chlorine isotopes will also be discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号