首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   833篇
  免费   99篇
  国内免费   783篇
安全科学   61篇
废物处理   120篇
环保管理   52篇
综合类   869篇
基础理论   238篇
污染及防治   341篇
评价与监测   27篇
社会与环境   6篇
灾害及防治   1篇
  2024年   5篇
  2023年   32篇
  2022年   60篇
  2021年   64篇
  2020年   70篇
  2019年   90篇
  2018年   99篇
  2017年   94篇
  2016年   98篇
  2015年   115篇
  2014年   94篇
  2013年   124篇
  2012年   102篇
  2011年   114篇
  2010年   57篇
  2009年   80篇
  2008年   34篇
  2007年   69篇
  2006年   40篇
  2005年   43篇
  2004年   25篇
  2003年   24篇
  2002年   28篇
  2001年   29篇
  2000年   23篇
  1999年   31篇
  1998年   11篇
  1997年   11篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1988年   2篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1967年   1篇
排序方式: 共有1715条查询结果,搜索用时 15 毫秒
121.
李慧婷  崔福义 《环境科学》2017,38(12):5229-5236
以厌氧颗粒污泥为研究对象,通过静态试验和连续流厌氧反应器,重点研究了长期暴露下纳米TiO_2在对厌氧产甲烷体系的影响及其在颗粒污泥中的归趋.结果表明,短期急性暴露于150 mg·g-1(以VSS计)的纳米TiO_2尽管会暂时减缓产甲烷速率,但产酸阶段及产甲烷阶段代谢产物总量不会明显受到影响,纳米TiO_2对厌氧颗粒污泥具有较低的急性毒性.反应器运行结果表明,纳米TiO_2的长期暴露可导致挥发性脂肪酸(VFAs)积累及生物气产量降低,产酸菌比产甲烷菌对纳米TiO_2的累积效应更加敏感,纳米TiO_2抑制机制可归因于"物理遮蔽"作用.出水中TiO_2的平均含量只有0.632 mg·L~(-1),绝大多数纳米TiO_2都被截留在了反应器中.FISH检测表明,厌氧颗粒污泥微生物的菌群结构有所变化,纳米TiO_2在反应器内的积累使得甲烷八叠球菌的丰度大幅增加了115.6%,其优势地位明显增强.长短期暴露试验的结果对比也说明,用短期暴露试验来说明纳米颗粒对厌氧体系的长期累积效应具有一定局限性,纳米TiO_2对厌氧颗粒污泥中微生物的负面影响需要较长时间的积累才会显现.本研究结果可为厌氧污水处理体系中纳米颗粒的潜在生态风险评价提供理论支持和参考依据.  相似文献   
122.
用蒸馏液闪法测量尿中氚水浓度 ,用氧化蒸馏液闪法测量尿中总氚 (氚水和有机氚 )浓度。同时测量了 1999年核设施退役时接触氚人员的高于本底水平的尿中氚水和总氚浓度 72个样品。比较氚水和有机氚浓度 ,得到有机氚浓度占氚水浓度的平均值为 (5 4± 3 7) % ,其值与理论值和动物实验值基本相符  相似文献   
123.
Technetium-99 (99Tc) is formed in significant amounts (6.2% fission yield) during fission in both nuclear reactors and nuclear bombs. The effects of technetium on soybeans (Glycine max) were studied in relation to (a) cytochemical events in the apical meristems of germinating seedlings; (b) growth responses to 0, 0.04, 0.2, 1.0, 5.0, and 20.0 ppm Tc; (c) growth responses to varying levels of Tc after a prior 5-day germination on Tc-free media, and (d) response to Tc in the presence of added manganese.By 20 days, reductions in growth were evident at all levels of Tc except 0.04 ppm (Experiment 2). Root growth was most severely affected, and seedling abnormality at 20 ppm was fivefold greater than that of the controls. The effect of 20 ppm Tc was evident at 10 days when the accumulated absorption dose was approximately 25 rads. The first evidence of damage at this dose was a delay in the initiation of the first trifoliate leaf. The shoot meristem size was 1.2-fold smaller than that of the control; however, there was no cytological evidence of radiation-induced damage. Observation of mitotic figures did not reveal any chromosome aberrations, micronuclei, or chromosome bridges. The lowest level of Tc showing toxicity was 0.2 ppm which resulted in a 31% reduction in growth at 20 days. The accumulated dose was 0.5 rad (0.025 rad/day) and thus it seems unlikely that the rapid inhibition of growth and development is due to radiological toxicity. It is quite probable that the growth effects are due to chemical toxicity possibly due to nutrient competition and/or substitution in uptake or metabolism. However, extremely low doses of radiation have been shown to delay the onset of DNA synthesis (possibly by membrane effects) inTradescantia and until the actual mechanism of Tc inhibition is determined a radiation effect cannot be totally ruled out.This research was partially supported by ERDA Contract EY-76-S-02-4139  相似文献   
124.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   
125.
On-line in-tube solid phase microextraction (in-tube SPME) coupled to high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) was successfully applied to the determination of selected triazines in water samples. The method based on the employment of a packed column containing graphene oxide (GO) supported on aminopropyl silica (Si) showed that the extraction phase has a high potential for triazines extraction aiming to its physical-chemical properties including ultrahigh specific surface area, good mechanical and thermal stability and high fracture strength. Injection volume and loading time were both investigated and optimized. The method validation using Si-GO to extract and concentrate the analytes showed satisfactory results, good sensitivity, good linearity (0.2–4.0 µg L?1) and low detection limits (1.1–2.9 ng L?1). The high extraction efficiency was determined with enrichment factors ranging from 1.2–2.9 for the lowest level, 1.3–4.9 intermediate level and 1.2–3.0 highest level (n = 3). Although the analytes were not detected in the real samples evaluated, the method has demonstrated to be efficient through its application in the analysis of spiked triazines in ground and mineral water samples.  相似文献   
126.
Background, Aim and Scope Due to their large potential for manifold applications, the use of nanoparticles is of increasing importance. As large amounts of nanoparticles may reach the environment voluntarily or by accident, attention should be paid on the potential impacts on the environment. First studies on potential environmental effects of photocatalytic TiO2 nanoparticles have been performed on the basis of widely accepted, standardized test systems which originally had been developed for the characterization of chemicals. The methods were adapted to the special requirements of testing photocatalytic nanoparticles. Materials and Methods: Suspensions of two different nanoparticles were illuminated to induce their photocatalytic activity. For testing, the growth inhibition test with the green alga Desmodesmus subspicatus and the immobilization test with the daphnid Daphnia magna were selected and performed following the relevant guidelines (algae: ISO 8692, OECD 201, DIN 38412-33; daphnids: ISO 6341, OECD 202, DIN 38412-30). The guidelines were adapted to meet the special requirements for testing photocatalytic nanoparticles. Results: The results indicate that it is principally possible to determine the ecotoxicity of nanoparticles. It was shown that nanoparticles may have ecotoxicological effects which depend on the nature of the particles. Both products tested differ in their toxicity. Product 1 shows a clear concentration-effect curve in the test with algae (EC50: 44 mg/L). It could be proven that the observed toxicity was not caused by accompanying contaminants, since the toxic effect was comparable for the cleaned and the commercially available product. For product 2, no toxic effects were determined (maximum concentration: 50 mg/L). In the tests with daphnids, toxicity was observed for both products, although the concentration effect-curves were less pronounced. The two products differed in their toxicity; moreover, there was a difference in the toxicity of illuminated and non-illuminated products. Discussion: Both products differ in size and crystalline form, so that these parameters are assumed to contribute to the different toxicities. The concentration-effect curves for daphnids, which are less-pronounced than the curves obtained for algae, may be due to the different test organisms and/or the differing test designs. The increased toxicity of pre-illuminated particles in the tests with daphnids demonstrates that the photocatalytic activity of nanoparticles lasts for a period of time. Conclusions: The following conclusions can be drawn from the test results: (I) It is principally possible to determine the ecotoxicity of (photocatalytic) nanoparticles. Therefore, they can be assessed using methods comparable to the procedures applied for assessing soluble chemicals. - (II) Nanoparticles may exert ecotoxicological effects, which depend on the specific nanoparticle. - (III) Comparable to traditional chemicals, the ecotoxicity depends on the test organisms and their physiology. - (IV) The photocatalytic activity of nanoparticles lasts for a relevant period of time. Therefore, pre-illumination may be sufficient to detect a photocatalytic activity even by using test organisms which are not suitable for application in the pre-illumination-phase. Recommendations and Perspectives: First results are presented which indicate that the topic 'ecotoxicity and environmental effects of nanoparticles' should not be neglected. In testing photocatalytic nanoparticles, there are still many topics that need clarification or improvement, such as the cause for an observed toxicity, the improvement of the test design, the elaboration of a test battery and an assessment strategy. On the basis of optimized test systems, it will be possible to test nanoparticles systematically. If a potential risk by specific photocatalytic particles is known, a risk-benefit analysis can be performed and, if required, risk reducing measures can be taken.  相似文献   
127.
One of the important cultural practices that affect methane and nitrous oxide emissions from tropical rice plantations is the water drainage system. While drainage can reduce methane emissions, it can also increase nitrous oxide emissions, as well as reduce yields. In this experiment, four different water drainage systems were compared in a rice field in central Thailand including: (1) continuous flooding, (2) mid-season drainage, (3) multiple drainage and (4) a local method (drainage was done according to local cultural practice) in order to find a system of drainage that would optimize yields while simultaneously limiting methane and nitrous oxide emissions. Methane and nitrous oxide emission were observed and compared with rice yield and physical changes of rice plants. It was found that drainage during the flowering period could reduce methane emission. Interestingly, nitrous oxide emission was related to number of drain days rather than the frequency of draining. Fewer drain days can help reduce nitrous oxide emission. The mid-season drainage and the multiple drainage, with 6.9% and 11.4% reduction in rice yield, respectively, had an average methane emission per crop 27% and 35% lower when compared to the local method. Draining with fewer drain days during the flowering period was recommended as a compromise between emissions and yield. The field drainage can be used as an option to reduce methane and nitrous oxide emissions from rice fields with acceptable yield reduction. Mid-season drainage during the rice flowering period, with a shortened drainage period (3 days), is suggested as a compromise between the need to reduce global warming and current socio-economic realities.  相似文献   
128.
The environmental impact of nanotechnology has caused a great concern. Many in vitro studies showed that many types of nanoparticles were cytotoxic. However, whether these nanoparticles caused cell membrane damage was not well studied. F2-isoprostanes are specific products of arachidonic acid peroxidation by nonenzymatic reactive oxygen species and are considered as reliable biomarkers of oxidative stress and lipid peroxidation. In this article, we investigated the cytotoxicity of different nanoparticles and the degree of cellular membrane damage by using F2-isoprostanes as biomarkers after exposure to nanoparticles. The human lung epithelial cell line A549 was exposed to four silica and metal oxide nanoparticles: SiO2 (15 nm), CeO2 (20 nm), Fe2O3 (30 nm), and ZnO (70 nm). The levels of F2-isoprostanes were determined by using high-performance liquid chromatography/mass spectrometry. The F2-isoprostanes’ peak was identified by retention time and molecular ion m/z at 353. Oasis HLB cartridge was used to extract F2-isoprostanes from cell medium. The results showed that SiO2, CeO2, and ZnO nanoparticles increased F2-isoprostanes levels significantly in A549 cells. Fe2O3 nanoparticle also increased F2-isoprostanes level, but was not significant. This implied that SiO2, CeO2, ZnO, and Fe2O3 nanoparticles can cause cell membrane damage due to the lipid peroxidation. To the best of our knowledge, this is the first report on the investigation of effects of cellular exposure to metal oxide and silica nanoparticles on the cellular F2-isoprostanes levels.  相似文献   
129.
用蒸馏-液闪法和氧化蒸馏-液闪法分别测量了氚污染人员尿中的氚水浓度和总氚(氚水和有机氚)浓度。根据72个高于本底水平的尿中氚水和总氚浓度分析比较,认为在氚内污染工作人员的尿中,有机氚与氚水的浓度比值为(5.4 3.7)%。  相似文献   
130.
Novel applications of nanotechnology may lead to the release of engineered nanoparticles (ENPs), which result in concerns over their potential environmental hazardous impact. It is essential for the research workers to be able to quantitatively characterise ENPs in the environment and subsequently to assist the risk assessment of the ENPs. This study hence explored the application of nanoparticle tracking system (NTA) to quantitatively describe the behaviour of the ENPs in natural sediment-water systems. The NTA allows the measurement of both particle number concentration (PNC) and particle size distribution (PSD) of the ENPs. The developed NTA method was applied to a range of gold and magnetite ENPs with a selection of surface properties. The results showed that the positively-charged ENPs interacted more strongly with the sediment than neutral and negatively-charged ENPs. It was also found that the citrate coated Au ENPs had a higher distribution percentage (53%) than 11-mercaptoundecanoic acid coated Au ENPs (20%) and citrate coated magnetite ENPs (21%). The principles of the electrostatic interactions between hard (and soft) acids and bases (HSAB) are used to explain such behaviours; the hard base coating (i.e. citrate ions) will interact more strongly with hard acid (i.e. magnetite) than soft acid (i.e. gold). The results indicate that NTA is a complementary method to existing approaches to characterise the fate and behaviour of ENPs in natural sediment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号