首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   3篇
  国内免费   68篇
安全科学   14篇
废物处理   3篇
环保管理   16篇
综合类   157篇
基础理论   34篇
污染及防治   42篇
评价与监测   5篇
  2023年   7篇
  2022年   6篇
  2021年   10篇
  2020年   11篇
  2019年   16篇
  2018年   9篇
  2017年   7篇
  2016年   11篇
  2015年   16篇
  2014年   10篇
  2013年   11篇
  2012年   12篇
  2011年   15篇
  2010年   9篇
  2009年   4篇
  2008年   7篇
  2007年   20篇
  2006年   13篇
  2005年   15篇
  2004年   14篇
  2003年   8篇
  2002年   8篇
  2001年   5篇
  2000年   8篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1987年   1篇
排序方式: 共有271条查询结果,搜索用时 187 毫秒
21.
The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR.  相似文献   
22.
A recombinant human androgen receptor yeast assay was applied to investigate the occurrence of antiandrogens as well as the mechanism for their removal during gray wastewater and coking wastewater treatment. The membrane reactor (MBR) system for gray wastewater treatment could remove 88.0% of antiandrogenic activity exerted by weakly polar extracts and 97.3% of that by moderately strong polar extracts, but only 32.5% of that contributed by strong polar extracts. Biodegradation by microorganisms in the MBR contributed to 95.9% of the total removal. After the treatment, the concentration of antiandrogenic activity in the effluent was still 1.05 μg flutamide equivalence (FEQ)/L, 36.2% of which was due to strong polar extracts. In the anaerobic reactor, anoxic reactor, and membrane reactor system for coking wastewater treatment, the antiandrogenic activity of raw coking wastewater was 78.6 mg FEQ/L, and the effluent of the treatment system had only 0.34 mg FEQ/L. The antiandrogenic activity mainly existed in the medium strong polar and strong polar extracts. Biodegradation by microorganisms contributed to at least 89.2% of the total antiandrogenic activity removal in the system. Biodegradation was the main removal mechanism of antiandrogenic activity in both the wastewater treatment systems.  相似文献   
23.
Heterogeneous membranes were obtained by using styrene-acrylonitrile copolymer (SAN) blends with low content of ion-exchanger particles (5 wt.%). The membranes obtained by phase inversion were used for the removal of copper ions from synthetic wastewater solutions by electrodialytic separation. The electrodialysis was conducted in a three cell unit, without electrolyte recirculation. The process, under potentiostatic or galvanostatic control, was followed by pH and conductivity measurements in the solution. The electrodialytic performance, evaluated in terms of extraction removal degree (rd) of copper ions, was better under potentiostatic control then by the galvanostatic one and the highest (over 70%) was attained at 8 V. The membrane efficiency at small ion-exchanger load was explained by the migration of resin particles toward the pores surface during the phase inversion. The prepared membranes were characterized by various techniques i.e. optical microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and differential thermal analysis and contact angle measurements.  相似文献   
24.
To reduce the consumption of freshwater in the laundry industry, a new trend of closing the water cycle has resulted in the reuse/recycling of water. In this study, the performance of a full-scale submerged aerobic membrane bioreactor (9 m3) used to treat/reuse industrial laundry wastewater was examined over a period of 288 days. The turbidity and total solids (TS) were reduced by 99%, and the chemical oxygen demand (COD) effluent removal efficiencies were between 70% and 99%. The levels of COD removed by the membrane were significantly greater than the levels of biodegraded COD. This enabled the bioreactor to sustain COD levels that were below 100 mg/L, even during periods of low wastewater biodegradation due to bioreactor sludge. An economic evaluation of the membrane bioreactor (MBR) system showed a savings of 1.13 € per 1 m3 of water. The payback period for this system is approximately 6 years. The energy and maintenance costs represent only 5% of the total cost of the MBR system.  相似文献   
25.
A novel SBM-C-PBR was constructed for microalgae cultivation. Membrane fouling was greatly mitigated by membrane carbonation. NH4+ and P removal rates were around 80% in SBM-C-PBR. Biomass was completely retained by membrane. In this study, a novel sequence batch membrane carbonation photobioreactor was developed for microalgae cultivation. Herein, membrane module was endowed functions as microalgae retention and CO2 carbonation. The results in the batch experiments expressed that the relatively optimal pore size of membranes was 30 nm, photosynthetically active radiation was 36 W/m2 and the CO2 concentration was 10% (v/v). In long-term cultivation, the microalgal concentration separately accumulated up to 1179.0 mg/L and 1296.4 mg/L in two periods. The concentrations of chlorophyll a, chlorophyll b and carotenoids were increased about 23.2, 14.9 and 6.3 mg/L respectively in period I; meanwhile, the accumulation was about 25.0, 14.5, 6.6 mg/L respectively in the period II. Furthermore, the pH was kept about 5.5–7.5 due to intermittent carbonation mode, which was suitable for the growth of microalgae. Transmembrane pressure (TMP) was only increased by 0.19 and 0.16 bar in the end of periods I and II, respectively. The pure flux recovered to 75%–80% of the original value by only hydraulic cleaning. Scanning electron microscope images also illustrated that carbonation through membrane module could mitigate fouling levels greatly.  相似文献   
26.
向膜生物反应器内投加40 g·L-1粉末活性炭处理尾水,运行效果良好.排泥和水力停留时间对处理效果有很大影响,流量和曝气量在一定程度上决定了膜污染的进程,粉末活性炭吸附降解了一些易引起膜污染的有机物,改变了污泥的性质,使膜通量得到改善.气洗和反冲洗能很好的维持膜通量,离线清洗可使膜通量基本恢复.  相似文献   
27.
普通活性污泥膜生物反应器处理洗车废水的应用研究   总被引:6,自引:0,他引:6  
膜生物反应器是近年来发展起来的一种新型高效水处理设备。它将分离工程中的膜技术应用于好氧活性污泥处理系统,由膜组件取代传统生化处理技术中的二次沉淀池和砂滤池,由膜分离技术代替传统方法中的重力式沉淀泥水分离技术方式,具有简洁、高效等优点。采用普通活性污泥膜生物反应器工艺对天津某一洗车点洗车废水进行处理,并将处理出水回用于洗车。  相似文献   
28.
曝气强度对膜污染的影响   总被引:1,自引:1,他引:1  
混合液浓度的高低及其粒度分布特性是影响膜生物反应器膜污染的重要因素。在一定污泥浓度下,主要考察了曝气强度对污泥絮体粒度分布的影响,以及不同粒度下的膜污染特性。试验结果表明,曝气强度提高,可以起到减缓污泥颗粒在膜表面的沉积作用,但高的错流流速产生的剪切效应使得污泥颗粒变得琐碎,导致细小胶体粒子和溶解性部分增多,增加了膜孔吸附和堵塞的机会,加剧了膜污染的进程。膜污染速率在曝气强度提高初期阶段迅速降低,接着又随曝气强度增加而缓慢升高,在污泥质量浓度为8 g/L的试验条件下,对应的最适曝气强度为84 m3/(m2.h)。  相似文献   
29.
In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality as well as membrane fouling were investigated systematically.Experimental results showed that,after 12 hr DCMD,the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis,with the permeate flux decreasing from the initial 8.7 L/m~2/hr to the final 4.3 L/m~2/hr due to membrane fouling;the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178 mg/L,which is suitable for reutilization.Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater,organic rejection of over 95%was achieved in wastewater.GC–MS results suggested that the fermentation wastewater contained 128kinds of organics,in which 14 organics dominated.After 12 hr DCMD,not only volatile organics including trimethyl pyrazine,2-acetyl pyrrole,phenethyl alcohol and phenylacetic acid,but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting.FT-IR and SEM–EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca,Mg,and amine,carboxylic acid and aromatic groups.The fouled membrane could be recovered,as most of the deposits could be removed using a HCl/Na OH chemical cleaning method.  相似文献   
30.
采用TMBR+NF/RO组合工艺对湖北省宜昌市某垃圾卫生填埋场渗滤液进行处理,介绍了组合工艺的流程、特点、设备规格、技术参数。TMBR系统对可生化降解COD处理后,COD平均质量浓度为822 mg/L,平均去除率为95.8%,对NH_3-N平均去除率为94.9%;经过NF/RO出水的COD平均值为45 mg/L,NH_3-N均小于25mg/L,达到《生活垃圾填埋场污染控制标准》(GB 16889—2008)的排放标准。组合工艺处理成本为29.5元/m3。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号