首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1213篇
  免费   170篇
  国内免费   633篇
安全科学   121篇
废物处理   134篇
环保管理   64篇
综合类   1069篇
基础理论   140篇
污染及防治   473篇
评价与监测   11篇
灾害及防治   4篇
  2024年   30篇
  2023年   77篇
  2022年   102篇
  2021年   97篇
  2020年   105篇
  2019年   96篇
  2018年   66篇
  2017年   75篇
  2016年   112篇
  2015年   107篇
  2014年   124篇
  2013年   117篇
  2012年   118篇
  2011年   98篇
  2010年   71篇
  2009年   99篇
  2008年   86篇
  2007年   79篇
  2006年   63篇
  2005年   54篇
  2004年   51篇
  2003年   52篇
  2002年   22篇
  2001年   22篇
  2000年   19篇
  1999年   22篇
  1998年   7篇
  1997年   7篇
  1996年   12篇
  1995年   6篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有2016条查询结果,搜索用时 15 毫秒
91.
为研究吸附剂对正态磷酸盐、非正态磷酸盐的吸附特征,以及正态磷酸盐和非正态磷酸盐混合体系下的竞争吸附行为,制备出3种改性蒙脱石SWy-焙烧、SWy-Al、SWy-Fe,将其分别用于对不同形态的磷酸盐吸附实验中。结果表明,制备的3种改性蒙脱石对磷的吸附效果均有所提升。SWy-Fe的吸附效果最佳,对正态磷酸盐和非正态磷酸盐4 h吸附去除率分别提高了56.1%和55.3%,实验结果符合Ho拟二级吸附动力学方程。根据Langmuir吸附热力学方程,对正态磷酸盐和非正态磷酸盐的饱和吸附量分别为21.9 mg·g~(-1)和18.8 mg·g~(-1)。此外,在初始总磷浓度高于3.0 mg·L~(-1)的条件下,正态磷酸盐和非正态磷酸盐混合体系中的非正态磷酸盐吸附量显著高于正态磷酸盐,二者单位平衡吸附量之比为2.9∶1.0。改性蒙脱石对正态磷酸盐和非正态磷酸盐的吸附结果均表现为吸附外部液膜扩散、表面吸附、颗粒内扩散等多种过程的综合作用,可交换阳离子Ca~(2+)/Fe~(3+)/Al~(3+)的引入通过吸附络合作用提高了蒙脱石对磷酸盐的吸附能力。在初始总磷浓度高于3.0 mg·L~(-1)的条件下,正态磷酸盐和非正态磷酸盐混合体系存在吸附竞争现象,这为实际处理含磷废水吸附技术的发展和应用提供了理论依据。  相似文献   
92.
以土-膨润土为阻隔材料,使用硅灰及水泥对其进行固化改性,研究改性后阻隔墙对离子型稀土矿原地浸矿氨氮污染的阻控效果。通过了解阻隔墙材料的渗透性能、力学性能,并结合阻隔材料对氨氮的吸附效果、穿透效果和数值模拟结果,探讨改性土-膨润土阻隔材料对氨氮污染的阻控性能。结果表明:硅灰改性土-膨润土阻隔材料,最佳质量配比为硅灰∶土=1∶10,最佳含水率为67.80%;改性阻隔材料生成的铝硅酸盐提高了阻隔墙防渗性能,渗透系数为2.36×10~(-9) m·s~(-1);CaCO_3提高了材料的力学性能,使抗压强度达到0.896 MPa;改性阻隔材料对氨氮的吸附过程符合准二级动力学模型及Langmuir等温模型。这说明该吸附过程以化学吸附为主,并且该吸附是放热过程。在不同氨氮浓度的穿透下,渗透系数呈逐渐减小的趋势,实验期间并未达到穿透浓度。利用Visual MODFLOW数值模型对阻隔墙的阻控效果进行模拟发现,7 300 d后NH_4~+扩散范围小,未穿透阻隔墙。硅灰改性土-膨润土阻隔墙用于对离子型稀土矿氨氮污染阻控的效果较好。  相似文献   
93.
94.
土壤重金属污染因其隐蔽性、滞后性及对环境和人体健康的危害性,已引起广泛关注。生物炭因具有较大的孔隙率、比表面积及丰富的表面官能团,常用来修复重金属污染土壤。秸秆作为农业废弃物,将其制备为生物炭是其资源化利用和减少环境污染的有效途径。因此,本文综述不同秸秆生物炭的原料、制备技术和改性方法等对吸附重金属的影响,探讨其对重金属的吸附机理以及修复重金属污染土壤实际应用效率与影响因素,包括:(1)秸秆种类及制备温度对生物炭特性和重金属污染土壤修复效率的影响;(2)秸秆生物炭吸附/钝化土壤重金属的过程与机理;(3)可提高生物炭修复重金属污染土壤效率的改性技术及其实际应用效率和影响因素。并结合秸秆生物炭制备和应用中存在的问题提出展望,以期为提高秸秆生物炭在重金属污染土壤修复效率,实现农业废弃物资源化回收利用,减少环境污染提供理论基础和技术参考。  相似文献   
95.
CPB改性沸石对磷酸盐的吸附-解吸性能研究   总被引:2,自引:1,他引:1  
采用溴化十六烷基吡啶(CPB)对天然沸石进行改性,并考察了CPB改性沸石对磷酸盐的吸附-解吸性能。结果表明,CPB改性沸石对磷酸盐具备一定的吸附能力,且吸附行为满足Langmuir等温吸附模型;粒径、改性剂投加量、反应温度、pH值及共存阴离子等因素均会影响CPB改性沸石对磷酸盐的吸附能力;减小粒径和降低反应温度均有利于CPB改性沸石对磷酸盐的吸附去除;粒径≤0.18 mm CPB改性沸石吸附磷酸盐较优的改性剂投加量为250 mmol/kg;当溶液的初始pH值位于4~10之间时CPB改性沸石对磷酸盐的吸附能力随pH值的增加而增强;SO42-的存在会明显降低CPB改性沸石对磷酸盐的吸附效率,而提高溶液的pH值有助于消除SO42-存在对CPB改性沸石吸附磷酸盐的负面影响;HCO3-的存在会一定程度上抑制CPB改性沸石对磷酸盐的吸附去除,而提高溶液的pH值无法消除HCO3-存在对CPB改性沸石吸附磷酸盐的负面影响;CPB改性沸石吸附磷酸盐后一定条件下可以重新解吸出来,且随着解吸液SO42-浓度的增加解吸率明显增大。  相似文献   
96.
改性粉煤灰协同PSFA处理高度乳化油废水   总被引:4,自引:2,他引:2  
通过正交实验对改性粉煤灰协同粉煤灰基混凝剂PSFA处理高度乳化油废水的工艺条件进行了优化。实验结果表明:当处理500 mL废水,投加改性粉煤灰25 g,粉煤灰基混凝剂6~8 g,PAM6~9 mL,pH为7.0,搅拌10~15 min的优化条件下,高度乳化油废水中COD、石油类物质的去除率可分别可达85.4%及50.3%。该方法与传统CaCl2+PFS+PAM组合相比,具有处理效果好,沉降速度快,运行费用低等优点。  相似文献   
97.
疏水改性阳离子聚丙烯酰胺絮凝剂的制备及其絮凝性能   总被引:5,自引:2,他引:3  
通过水溶液共聚合法,以丙烯酰胺(AM)、丙烯酰氧乙基三甲基氯化铵(DAC)和2-乙烯基吡啶(2-VP)为共聚单体合成了疏水改性阳离子聚丙烯酰胺P(AM-DAC-2VP),并用红外光谱仪和核磁共振光谱仪对其结构进行了表征。实验结果表明:当w(2-VP)为1.0%、w(DAC)为30%、活性污泥pH为5、P(AM-DAC-2VP)加入量为25mg/L时,P(AM-DAC-2VP)对本实验的活性污泥絮凝能力最强,上清液透光率为92.1%;P(AM-DAC-2VP)比同条件下制备的阳离子聚丙烯酰胺P(AM-DAC)具有更好的絮凝效果。  相似文献   
98.
以废弃的小叶榕落叶作为吸附剂,通过正交试验选择制备改性小叶榕落叶的最佳条件,结果表明:当硝酸浓度为10moL/L,干燥温度为120℃和氢氧化钠浓度为1moL/L时,改性后的小叶榕落叶的活性最强,对废水中Cu2+的吸附率最高。利用改性后的小叶榕落叶进行了吸附去除水中Cu2+的研究,得出当pH为5.7,铜的最大吸附容量Qmax=0.59mg(Cu)/g(改性落叶)。并通过非线性回归,构建了影响因素同吸附率之间的数学模型和落叶吸附的动力学模型。  相似文献   
99.
为讨论表面改性对活性炭吸附特性的影响,用氨改性活性炭对Pb(Ⅱ)的吸附性能进行了研究。通过高温氨气吹扫对活性炭进行表面改性处理,观察了改性后活性炭物化性质的变化,研究了氨改性活性炭对Pb(Ⅱ)的吸附等温关系与动力学,并对吸附前后氨改性活性炭的形貌进行了分析。结果表明,氨改性后活性炭比表面积和总孔孔容均略有增大,活性炭中N元素含量明显增高,含氧官能团数量减少,零电荷点增大。氨改性后活性炭对Pb(Ⅱ)的吸附效果明显提高,吸附过程数据可用等温吸附方程描述,改性后活性炭对Pb(Ⅱ)的吸附符合拟二级动力学。Pb(Ⅱ)在氨改性活性炭表面上的附着明显可见。通过红外光谱分析,活性炭表面含氮官能团与Pb(Ⅱ)发生缔合作用。  相似文献   
100.
为了研究改性前后活性炭对水中铬离子(Ⅵ)的吸附效果,以磷酸活性炭(PAC)为原料,用10%硝酸改性得到硝酸改性活性炭(N-PAC)及直接蒸发法载铁改性得到载铁活性炭(Fe-PAC)。通过静态吸附研究表明,改性后活性炭对Cr(Ⅵ)的吸附率有较大提高。在常温、自然pH条件下,0.2 g活性炭处理50 mL浓度为100 mg/L的含Cr(Ⅵ)溶液,N-PAC和Fe-PAC对Cr(Ⅵ)的吸附率分别为79.21%和90.59%,都高于原PAC对Cr(Ⅵ)的吸附率49.58%。pH从2.2升高到11.92,Fe-PAC对Cr(Ⅵ)的吸附率从99.86%降低到14.77%,N-PAC则从99.86%降低到3.23%,PAC从97.05%降低到2.53%。温度从25℃升高到70℃,3种活性炭对Cr(Ⅵ)吸附率都有较大提高,都增加到98%以上。且吸附过程较符合Langmuir等温吸附模型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号