首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   731篇
  免费   8篇
  国内免费   62篇
安全科学   196篇
废物处理   19篇
环保管理   53篇
综合类   358篇
基础理论   35篇
污染及防治   81篇
评价与监测   53篇
社会与环境   4篇
灾害及防治   2篇
  2023年   12篇
  2022年   12篇
  2021年   31篇
  2020年   38篇
  2019年   17篇
  2018年   8篇
  2017年   14篇
  2016年   22篇
  2015年   37篇
  2014年   49篇
  2013年   40篇
  2012年   30篇
  2011年   55篇
  2010年   21篇
  2009年   48篇
  2008年   37篇
  2007年   44篇
  2006年   48篇
  2005年   49篇
  2004年   23篇
  2003年   26篇
  2002年   21篇
  2001年   19篇
  2000年   17篇
  1999年   17篇
  1998年   14篇
  1997年   9篇
  1996年   14篇
  1995年   8篇
  1994年   11篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1973年   1篇
排序方式: 共有801条查询结果,搜索用时 15 毫秒
101.
The pure decomposition behavior of 2,2′-azobis (isobutyronitrile) (AIBN) and its physical phase transformation were examined and discussed. The thermal decomposition of this self-reactive azo compound was explored using differential scanning calorimetry (DSC) to elucidate the stages in the progress of this chemical reaction. DSC was used to predict the kinetic and process safety parameters, such as self-accelerating decomposition temperature (SADT), time to maximum reaction rate under adiabatic conditions (TMRad), and apparent activation energy (Ea), under isothermal and adiabatic conditions with thermal analysis models. Moreover, vent sizing package 2 (VSP2) was applied to examine the runaway reaction combined with simulation and experiments for thermal hazard assessment of AIBN. A thorough understanding of this reaction process can identify AIBN as a hazardous and vulnerable chemical during upset situations. The sublimation and melting of AIBN near its apparent onset decomposition temperature contributed to the initial steps of the reaction and explained the exothermic attributes of the peaks observed in the calorimetric investigation.  相似文献   
102.
Independent studies of case histories by the Health and Safety Commission in the UK and by a Honeywell led industrial consortium world-wide showed that human errors represent the major cause of failure in process plant operation. In contrast to this discovery the majority of previous studies on computer aided systems for fault detection and diagnosis has focused on the process side. This paper presents a methodology, which can involve human factors into the development of systems for automatic identification and diagnosis of abnormal operations and develops methods and techniques that can be used to simultaneously capture, characterise and assess the performance of operators as well as of the process. A joint process–operator simulation platform is developed which is used as a test-bed for carrying out the study. The process part is a simulator, which simulates in high fidelity the dynamic behaviour of the process that is subject to the influence of various disturbances and operators’ interventions. The operator module is developed as a real-time expert system, which emulates operator’s behaviour in interpretation of received signals, and planning and execution of decisions. The interaction between the two modules is managed through an interaction module, which handles the real-time exchange of data using Dynamic Data Exchange. The interaction module also contains the toolkits for analysing the dynamic behaviour of the joint process–operator system. The method and system are illustrated using a simulated case study.  相似文献   
103.
Process safety incidents can result in injuries, fatalities, environmental impacts, facility damage, downtime & lost production, as well as impacts on a company's and industry's reputation. This study is focused on an analysis of the most commonly reported contributing factors to process safety incidents in the US chemical manufacturing industry. The database for the study contained 79 incidents from 2010 to 2019, partly investigated by the Chemical Safety Board (CSB). To be included in the study, the CSB archive of incident investigations were parsed to include only incidents which occurred at a company classified as 325 in the North American Industry Classification System (NAICS), assigned to businesses that participate in chemical manufacturing. For each incident, all of the identified contributing factors were catalogued in the database. From this list of identified contributing factors, it was possible to name the ‘top three’ contributing factors. The top three contributing factors cited for the chemical manufacturing industry were found to be: design; preventive maintenance; and safeguards, controls & layers of protection. The relationship between these top contributing factors and the most common OSHA citations was investigated as well. The investigation and citation history for NAICS 325 companies in the Occupational Safety & Health Administration (OSHA) citations database was then analysed to assess whether there was any overlap between the top reported contributing factors to process safety events and the top OSHA citations recorded for the industry. A database consisting of the inspection and citation history for the chemical manufacturing industry identified by NAICS code 325 was assembled for inspections occurring between 2010 and 2020 (August). The analysis of the citation history for the chemical manufacturing industry specifically, identified that the list of the top contributing factors to process safety incidents overlapped with the most common OSHA violations. This finding is relevant to industry stakeholders who are considering how to strategically invest resources for achieving maximum benefit – reducing process safety risk and simultaneously improving OSHA citation history.  相似文献   
104.
105.
The coronavirus disease (COVID-19) brought the world to a halt in March 2020. Various prediction and risk management approaches are being explored worldwide for decision making. This work adopts an advanced mechanistic model and utilizes tools for process safety to propose a framework for risk management for the current pandemic. A parameter tweaking and an artificial neural network-based parameter learning model have been developed for effective forecasting of the dynamic risk. Monte Carlo simulation was used to capture the randomness of the model parameters. A comparative analysis of the proposed methodologies has been carried out by using the susceptible, exposed, infected, quarantined, recovered, deceased (SEIQRD) model. A SEIQRD model was developed for four distinct locations: Italy, Germany, Ontario, and British Columbia. The learning-based approach resulted in better outcomes among the models tested in the present study. The layer of protection analysis is a useful framework to analyze the effect of different safety measures. This framework is used in this work to study the effect of non-pharmaceutical interventions on pandemic risk. The risk profiles suggest that a stage-wise releasing scenario is the most suitable approach with negligible resurgence. The case study provides valuable insights to practitioners in both the health sector and the process industries to implement advanced strategies for risk assessment and management. Both sectors can benefit from each other by using the mathematical models and the management tools used in each, and, more importantly, the lessons learned from crises.  相似文献   
106.
Thermal runaway was studied in a continuous tubular pilot reactor under steady-state regime. Different accident scenarii were conducted by making some errors on reactant concentrations and/or temperature feed. To prevent thermal runaway, control by direct contact by solvent injection was used at different reactor locations. This injection allowed controlling the maximum reaction temperature. A simplified analytical method to estimate the maximum reaction temperature along the reactor was used.Benefit of this control method was the diminution of computational time. Furthermore, by injecting solvent to control maximum reaction temperature, there is no need to shut down the unit. The control method was validated experimentally.  相似文献   
107.
Identifying dead-legs and related corrosion issues continues to be a challenge in the process industry. Pipeline corrosion has been a factor in several recent incidents involving releases and fires. A review of incident reports and citations over the past ten years indicates that Process Hazard Analysis (PHA) revalidations have been noted for not addressing the hazards of a process including corrosion mechanisms and dead-legs. In order for the hazards to be addressed, they must first be accurately identified in a PHA and documented along with any recommended actions for preventive maintenance. This paper describes a methodology for identifying and addressing dead-legs and related corrosion issues in a PHA that can be used to update corporate PHA procedures to be more robust in preventing corrosion related incidents.  相似文献   
108.
植物诱导抗病性的分子生物学研究进展   总被引:3,自引:0,他引:3  
植物诱导抗病性是植物抵御病害侵袭的重要机制之一,作为一种经济有效的抗病策略,在农业可持续病害防治中具有广阔的应用前景,日益受到人们的关注.其中系统获得性抗性(SAR)作为植物诱导抗病性的一种重要形式,随着分子生物学实验手段的迅速发展及其在植物抗病机制研究中的应用,其分子机制研究方面已取得了不少进展.图1参58  相似文献   
109.
Summary. An important question in insect-plant interactions is which of the numerous plant compounds contribute to the perception of odour qualities in herbivorous insects and are likely to be used as cues in host-searching behaviour. In order to identify which plant-produced volatiles the strawberry blossom weevil Anthonomus rubi detects, we have used electrophysiological recordings from single olfactory neurones linked to gas chromatography and mass spectrometry. We here present 15 receptor neurone types specialised for naturally produced compounds present in the host and nonhost plants and two types for two aggregation pheromone components. The active compounds were terpenoids, aromatic and aliphatic esters, alcohols and aldehydes, some of which are induced by feeding activity of the weevils. The neurones were characterised by a strong response to one or two primary odorants and weaker responses to a few others having similar chemical structure. With one exception, the molecular receptive range of each neurone type was within one chemical group. Enantiomers of linalool separated on a chiral column activated two neurone types with different enantioselectivity. Inhibition by linalool of another neurone type, excited by α-pinene, indicated an additional mechanism for coding the information about this compound. Altogether, detection of 54 compounds by olfactory receptor neurones is shown, of which 40 have been chemically identified in this study. Thus A. rubi has the ability to detect a large number of odorants that may be used in host selection behaviour.  相似文献   
110.
通过实验模拟烟气,观察SO_2在一种特殊的脉冲电晕放电等离子体环境中的氧化变化过程,研究了烟气温度、SO_2初始浓度等参数对SO_2氧化率、单位能量氧化量的影响规律。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号