首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   78篇
  国内免费   127篇
安全科学   127篇
废物处理   23篇
环保管理   39篇
综合类   357篇
基础理论   91篇
污染及防治   60篇
评价与监测   21篇
社会与环境   15篇
灾害及防治   27篇
  2024年   4篇
  2023年   11篇
  2022年   18篇
  2021年   35篇
  2020年   33篇
  2019年   33篇
  2018年   22篇
  2017年   23篇
  2016年   21篇
  2015年   32篇
  2014年   26篇
  2013年   43篇
  2012年   41篇
  2011年   44篇
  2010年   34篇
  2009年   36篇
  2008年   25篇
  2007年   45篇
  2006年   31篇
  2005年   40篇
  2004年   18篇
  2003年   23篇
  2002年   20篇
  2001年   15篇
  2000年   19篇
  1999年   11篇
  1998年   8篇
  1997年   8篇
  1996年   7篇
  1995年   9篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有760条查询结果,搜索用时 15 毫秒
151.
齐鹏  周颖  程水源  白伟超 《环境科学》2022,43(11):5018-5029
基于云高仪激光雷达、飞机AMDAR数据和常规站点等多源观测数据,并与数值模拟(CAMx-PSAT模型)相结合,以京津冀典型城市——北京城区与郊区(密云)和石家庄城区与郊区(平山)为案例研究区域,对城区和郊区边界层高度差异(ΔPBLH)、地面PM2.5浓度差异(ΔSurf_PM2.5)、高空PM2.5浓度差异(ΔVert_PM2.5)和传输通量强度及高度分布特征差异进行分析.结果表明,由于人为热源、短波辐射和热力湍流等因素,导致城区年均边界层高度(PBLH)较郊区高8%~29%,且不同季节下城区PBLH月均较郊区高2%(石家庄4月)~47%(北京7月).由于人为排放、逆温和大气湍流等共同作用,在0~1260 m之间等高度城区年均ρ(PM2.5)较郊区高0.1(石家庄)~29.7(北京)μg ·m-3,随高度增加而减小.城区年均总净通量强度远大于郊区,城区表现为流出,郊区表现为流入,是由于城区低压和郊区高压,形成城郊热力环流.北京城区和郊区与周边的年均总净通量强度之和(44.77 t ·d-1)大于石家庄(34.44 t ·d-1).受风速和PM2.5浓度的影响,在0~1260 m之间,城区和郊区与周边的净通量随离地高度的增加通量强度呈现明显增大趋势,其中1月城区和4月郊区与周边的传输交换对环境影响最为明显.不同季节下城区和郊区最大净通量的强度差异明显,两者相差2.23~4.48倍;但最大净通量强度的高度特征差异较小,主要位于611~1260 m.  相似文献   
152.
气象激光雷达的城市边界层探测   总被引:5,自引:0,他引:5  
为了研究城市边界层结构变化特征,2005年7月利用气象激光雷达在南京城区做了城市边界层探测试验,就此次观测试验作了简要叙述并选取部分观测资料为示例,着重对气象激光雷达确定城市边界层高度垂直分布及逐时变化以及地面气象环境对边界层的日变化影响进行了初步分析.结果表明,主要由近地层对流混合形成的城市边界层高度具有典型的日变化特点,早晚比较低,日间有一个从低到高再到低的变化过程.提出了一种由边界层混合状态确定边界层高度的方法.分析结果表明,由气溶胶消光系数确定城市边界层高度比较准确.将MSL探测结果与同步的低空无线电探测仪的温度探测结果进行比较,结果表明,两者获得的实际廓线分布相当吻合,线性良好.就地表温度、辐射、湿度及云等气象要素对边界层垂直分布及时间变化的影响做了分析.结果表明,这些气象要素的分布对城市边界层高度的垂直分布及其逐时变化有明显影响.  相似文献   
153.
兰州西固工业区夏季光化学烟雾污染的气象条件   总被引:9,自引:0,他引:9  
通过对兰州西固工业区光化学烟雾污染规律与气象条件的关系的研究表明,在高空槽后的低空弱高压控制下,西固区出现高的臭氧浓度值,此时大气层结稳定,风很小,天气晴朗,但中午有浓重烟雾,臭氧浓度峰值在中午出现。该区盆地内形成的光化学烟雾烟团水平面积达几十公里,臭氧浓度的日变化取决于太阳总辐射和大气边界层的日变化。  相似文献   
154.
北京夏季灰霾天臭氧近地层垂直分布与边界层结构分析   总被引:5,自引:3,他引:5  
后奥运时期首都北京的空气质量被更加关注,尤其是对于灰霾天与光化学复合污染的状况,而近地层数百米高度内的大气污染物与大气物理参数垂直分布观测对于空气质量变化过程评估至关重要.因此,本研究于2009年8月1-16日,在北京市325 m气象塔进行了相应的立体观测,观测平台垂直分布在距离地面高度8、47、120和280 m四层中.同时,在近地面320 m高度以内,分15层分别观测了大气温度、湿度、风速、风向.另外,使用气溶胶后向散射云高仪观测了边界层2.5 km内气溶胶后向散射系数.利用垂直分层的O3数据与边界层物理观测数据并结合天气形势、后向轨迹模式等方法,综合分析了本次观测数据之间的相互关系和内在联系.结果表明:夏季西北部低压槽控制的北京区域不利于低空大气扩散,容易形成光化学污染叠加灰霾污染,污染形成时白天地面小时最大φ(O3)可达120×10-9,280 m高度处可达155×10-9;来自西北偏西的气流一般较为干净,有利于北京污染物的清除,而来自西南和偏南的气流使北京的O3污染加重,导致区域性高浓度O3污染;在稳定天气条件下,夜间残留层与地面的φ(O3)差别越大,次日光化学生成的φ(O3)起点越高,表明残留层O3在次日混合层抬升过程中卷夹到地面,影响地面空气质量;300 m以内的近地层,在50 m高度左右存在φ(O3)变化程度剧烈层,这是城市冠层界面与大气化学反应共同作用的结果.  相似文献   
155.
将沿海扩散模式OCD与区域输送模式相嵌套,集成在区域空气质量模拟系统RegAQMS中,由天气研究和预报模式WRF提供气象场,大气边界层模式计算湍流场和边界层特征参数,并引入生物气溶胶的干湿沉积、生物学衰变、温度和湿度衰减、紫外辐射衰减等过程,使得RegAQMS具备模拟生物气溶胶浓度分布的能力.利用改进后的RegAQMS,以2008年7、8月为例,针对东南沿海地区,进行了口蹄疫病毒生物气溶胶扩散有关物理和生物过程的敏感性试验,对地面口蹄疫病毒浓度进行模拟和风险等级评估.敏感性试验表明,考虑干湿沉积、温度、湿度和生物学衰减过程之后,7、8月地面病毒平均浓度(≥0.01μg.m-3的网格点平均)分别减小61.9%和65.6%,污染区面积分别减小25.6%和50.1%,温度衰减是影响夏季病毒浓度的最主要过程,生物学衰减和干湿沉积也起着较大的作用,湿度衰减的影响很小.风险和感染评估结果表明,在与前人研究类似的源释放条件下,研究区域大部分为低等风险区和安全区,高等风险区以上的面积较小,呈条状分布在两个主要风频的下风向,7月和8月的风险区面积分别占整个区域面积的61.6%和54.2%,感染区面积占整个区域面积的不到1%.受海洋大气和海峡地形作用的影响,流场规则、日风向变化和水平湍流强度小,这些是引起病毒较高传播风险和感染的主要原因.  相似文献   
156.
为了探究我国东海至南大洋航线海洋近地层大气NOx的分布特征,于2015年11月-2016年1月,利用中国极地科学考察船"雪龙号"的观测平台,采用Saltzman法对中国东海至南大洋航线海洋近地层大气NOx日均浓度进行了监测.结果表明,中国东海至南大洋航线海洋近地层大气ρ(NOx)的变化范围为0.001~0.038 mg/m3,ρ(NO)的变化范围为0.001~0.033 mg/m3,ρ(NO2)的变化范围为0(未检出)~0.015 mg/m3.中国东海至南大洋航线海洋近地层大气中,NO是NOx的主要成分.南极圈外海洋近地层大气中NOx的分布特征显示距离陆地越近,ρ(NOx)越高,NO2/NO(二者质量浓度比值)越大,反映出海陆差异及人为污染对海洋近地层大气的影响.远离陆地的南大洋航段ρ(NOx)显示较低的大洋背景值.南桑威奇群岛的火山活动导致附近海域异常高浓度的NOx分布,ρ(NOx)最高值达0.160 mg/m3,ρ(NO)为0.145 mg/m3,ρ(NO2)为0.015 mg/m3.西风带的阻隔导致该区域NOx向周围扩散时,难以穿越西风带,向南极大陆边缘扩散的趋势更加强烈,影响大范围南大洋近地层大气NOx分布.人为活动可能是南极半岛和中山站附近海洋近地层大气高ρ(NOx)和高NO2/NO的原因之一.   相似文献   
157.
车载激光雷达对北京地区边界层污染监测研究   总被引:7,自引:2,他引:5  
介绍了自行研制的车载差分激光雷达AML-2探测原理及技术参数,于2006-08、2006-09在不同天气因素条件下对北京西南郊榆垡地区大气边界层污染物O3、NO2、SO2进行了实时监测,对比分析了3种污染物浓度垂直分布及日变化特征.结果表明,无外来污染输送时,3种污染物在阴雨天气总体浓度较小,O3和NO2浓度随高度升高而减小,SO2浓度垂直分布少见此特征,但在近地面0.6 km左右有较强SO2污染层.南部气流输送对北京地区大气环境影响明显,2006-08-23~2006-08-25这次强污染气流输送高度约1~1.5 km,3种污染物浓度垂直分布及日变化特征受到干扰,北京榆垡地区边界层O3、NO2、SO2总体浓度明显上升.  相似文献   
158.
More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation behavior of nano-silica particles with diameter 130–480 nm at different initial particle concentration, pH, ionic strength, and ionic valence of electrolytes. The modified Smoluchowski theory failed to describe the aggregation kinetics for nano-silica particles with diameters less than 190 nm. Besides, ionic strength, cation species and pH all affected fast aggregation rate coefficients of 130 nm nanoparticles. Through incorporating structural hydration force into the modified Smoluchowski theory, it is found that the reason for all the anomalous aggregation behavior was the different structural hydration layer thickness of nanoparticles with various sizes. The thickness decreased with increasing of particle size, and remained basically unchanged for particles larger than 190 nm. Only when the distance at primary minimum was twice the thickness of structural hydration layer, the structural hydration force dominated, leading to the higher stability of nanoparticles. This study clearly clarified the unique aggregation mechanism of nanoparticles with smaller size, which provided reference for predicting transport and fate of nanoparticles and could help facilitate the evaluation of their environment risks.  相似文献   
159.
指出了宽板塑性弯曲原理论解[1]和实验值[2]的矛盾,提出了一种新的理论解法,并与实验值作了比较,二者非常接近。  相似文献   
160.
分布在世界各地的K/T界面剖面,尽管形成环境各异,但彼此之间的岩石矿物特征却有许多共同之处。对于大多数剖面来说,界面粘土层的底都普遍存在着一个结构特别的冲击层。冲击层的厚度在全球的分布并不均匀,北美和加勒比海地区可达2~50cm,而其它地区则只有几厘米。冲击层的厚度可能反映了距离撞击坑的远近。详细的岩石与矿物学研究结果表明,在北美和加勒比海地区冲击层实际上具有双层结构特征。上面的一层称为火球层,除了富集Ir和其它地外指示元素外,还含有大量的烟灰和富Ni镁铁尖晶石。下面的溅射层则含有大量的冲击玻璃球粒(玻璃陨石)和冲击变质矿物。K/T界面冲击层的发现为Ir异常的地外撞击成因解释提供了更为直接的物理证据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号