首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   908篇
  免费   22篇
  国内免费   263篇
安全科学   29篇
废物处理   25篇
环保管理   107篇
综合类   538篇
基础理论   219篇
污染及防治   184篇
评价与监测   66篇
社会与环境   24篇
灾害及防治   1篇
  2024年   8篇
  2023年   35篇
  2022年   39篇
  2021年   37篇
  2020年   35篇
  2019年   29篇
  2018年   28篇
  2017年   23篇
  2016年   34篇
  2015年   50篇
  2014年   49篇
  2013年   43篇
  2012年   56篇
  2011年   79篇
  2010年   58篇
  2009年   61篇
  2008年   74篇
  2007年   69篇
  2006年   54篇
  2005年   35篇
  2004年   42篇
  2003年   34篇
  2002年   26篇
  2001年   31篇
  2000年   40篇
  1999年   30篇
  1998年   13篇
  1997年   18篇
  1996年   15篇
  1995年   14篇
  1994年   7篇
  1993年   9篇
  1992年   4篇
  1991年   5篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有1193条查询结果,搜索用时 0 毫秒
311.
The sulphur dioxide and nitrogen oxides emissions from all sources in Alberta, Canada, during 1982 amounted to 488,297 and 353,511 tonnes, respectively. During this year deposition of wet sulphate from all stations in the province, 8 kg ha–1 yr–1, compares well with the five-year average (1978–1982) value of 10 kg ha–1 yr–1. These measurements are about one-half of the wet sulphate deposition criteria of 20 kg ha–1 yr–1 established for protecting the moderately sensitive aquatic ecosystem in eastern Canada. Due to dry, cold, continental climate conditions of Alberta, dry sulphate or sulphur deposition is equally or more important than wet deposition. No effects of the long-range transport of atmospheric pollutants (LRTAP) on the ecosystems in Alberta have been observed to date. Atmospheric deposition target loadings of SO4 –2, NO3 , and H+ for Alberta and western Canadian environmental conditions should be developed to protect the highly sensitive ecosystems. Some future research and monitoring priorities for Alberta and western Canada are outlined.  相似文献   
312.
Nutrient concentrations in Buttermilk Bay, a coastal embayment on the northern end of Buzzards Bay, MA, are higher in the nearshore where salinities are lower. This pattern suggests that freshwater sources may contribute significantly to nutrient inputs into Buttermilk Bay. To evaluate the relative importance of the various sources we estimated inputs of nutrients by each major source into the watershed and into the bay itself. Septic systems contributed about 40% of the nitrogen and phosphorus entering the watershed, with precipitation and fertilizer use adding the remainder. Groundwater transported over 85% of the nitrogen and 75% of the phosphorus entering the bay. Most nutrients entering the watershed failed to reach the bay; uptake by forests, soils, denitrification, and adsorption intercepted two-thirds of the nitrogen and nine-tenths of the phosphorus that entered the watershed. The nutrients that did reach the bay most likely originated from subsoil injections into groundwater by septic tanks, plus some leaching of fertilizers.Buttermilk Bay water has relatively low nutrient concentrations, probably because of uptake of nutrients by macrophytes and because of relatively rapid tidal flushing. Annual budgets of nutrients entering the watershed showed a low nitrogen-to-phosphorus ratio of 6, but passage of nutrients through the watershed raised N/P to 23, probably because of adsorption of PO4 during transit. The N/P ratio of water that leaves the watershed and presumably enters the bay is probably high enough to maintain active growth of nitrogenlimited coastal producers. There is a seasonal shift in N/P in the water column of Buttermilk Bay. N/P exceeded the 161 Redfield ratio during midwinter; the remainder of the year N/P fell below 161. This suggests that annual budgets do not provide sufficiently detailed data with which to interpret nutrient-limitation of producers. Further, some idea of water turnover is also needed to evaluate impact of loading rates. Urbanization of watersheds seems to increase loadings to nearshore environments, and to shift the nutrient loadings delivered to coastal waters to relatively high N-to-P ratios, potentially stimulating growth of nitrogen-limited primary producers.  相似文献   
313.
Nitrogen and phosphorus exports from channelizedstream watersheds were elevated over those from nearby natural swamp-stream watersheds. Nitrate exports were significantly greater from channelized-stream watersheds, and higher exports were attributed to faster groundwater drawdown, continual streamflow, and transformation of former floodplain to croplands following channelization. Exports of total organic nitrogen and total nitrogen were also significantly greater from channelized-stream watersheds. Differences in the exports of ammonium, filterable reactive phosphorus, and filterable unreactive phosphorus between the two watershed types were not detectable. Particulate phosphorus exports were significantly higher from channelized-stream watersheds, presumably because of greater erosion potential of nearby croplands and steep channel banks in the altered watersheds. The presence of nonpoint sources of pollution increased watershed exports of nutrients regardless of stream morphology. Examination of nutrient budgets for a portion of swamp floodplain at the base of one natural-stream watershed revealed that changes in local groundwater hydrology and stream morphology associated with channelization appeared to have greater effect on nutrient exports than simply the loss of bordering forested floodplain.  相似文献   
314.
由于没有单独测定二氧化氮的方法标准、二氧化氮标准气体和测定二氧化氮便携式(电化学传感器)仪器标准,目前不能利用标准气体评价二氧化氮便携式(电化学传感器)仪器的性能;但是,可采用将NO2还原成NO后用化学发光法、非分散红外线法或电化学传感器法测定氮氧化物。  相似文献   
315.
Quorum sensing (QS) regulation of the composition of ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) communities and functions in wastewater treatment was investigated. Specifically, we explored the role of N-acyl-l-homoserine lactones (AHLs) in microbial community dynamics in activated sludge. On average, the specific ammonia-oxidising-rate increased from 1.6 to 2.8?mg?NH4+-N/g?MLSS/hr after treatment with long-chain AHLs for 16?days, and the addition of AHLs to sludge resulted in an increased number of AOA/AOB amoA genes. Significant differences were observed in the AOA communities of control and AHL-treated cultures, but not the AOB community. Furthermore, the dominant functional AOA strains of the Crenarchaeota altered their ecological niche in response to AHL addition. These results provide evidence that AHLs play an important role in mediating AOA/AOB microbial community parameters and demonstrate the potential for application of QS to the regulation of nitrogen compound metabolism in wastewater treatment.  相似文献   
316.
An understanding of the long-term changes in the nitrate contamination pattern of unconfined groundwater is critical to conservation of drinking water in rural areas supporting mixed land-use activities such as cropping, livestock farming, and residence. To examine the effect of different land-use activities on nitrate contamination, groundwater samples were collected monthly for 3 years (1997–1999) from 12 wells in rural areas with different land-use activities and analyzed for the concentrations and N isotopic ratios (δ15N) of nitrate. The characteristics of nitrate contamination clearly differed with land-use activities. The percentages of samples that had a nitrate concentration exceeding the national standard for drinking water (10 mg N L−1) were 0, 23, 43, and 67% for the uncontaminated natural area, cropping area, cropping-livestock farming complex area, and residential area, respectively. The range of δ15N values was between +1.4 and +4.5‰ for groundwater nitrate from the uncontaminated natural area. In the cropping area, the δ15N values were slightly different with the type of fertilizer applied to fields in the vicinity of the well, and the values ranged between +8.7 and +14.4‰ for the compost-applied area and between +4.5 and +8.5‰ for the area where urea was applied with compost. The δ15N values of the cropping-livestock farming complex area ranged from +1.0 to +17.7‰, probably resulting from mixed contamination sources (inorganic fertilizer and livestock manure). The well located closest to the livestock feedlot had relatively higher δ15N values, with a range between +8.7 and +17.6‰. In the residential area, a higher δ15N (most frequently above +10‰) of nitrate suggested that the major source of contamination was effluent from leaky septic tanks. Our data showed that unconfined groundwater is susceptible to land-use activities above the aquifers, and the impacts of the activities could be more precisely inferred from long-term data on the concentration and δ15N of nitrate. By determining the impacts, more effective (specific to contamination sources) measures for preventing groundwater quality could be implemented.  相似文献   
317.
综放采空区防灭火注氮数值模拟与参数确定   总被引:7,自引:2,他引:7  
用有限元数值方法 ,求解了综放开采采空区注氮情况下的漏风渗流方程和氧浓度渗流耗散方程 ;结合计算机图形技术 ,直观展示了注氮前后采空区流场、流态和氧浓度分布动态变化 ;模拟了在不同注氮量下注氮控制区边界的变化过程 ,得到控制区边界位置与注氮流量呈负指数关系 ;重点探讨了用数值模拟方法确定合理注氮参数 (注氮流量、注氮位置和注氮时间 )的新方法。  相似文献   
318.
Biodegradability of Urea-Aldehyde Condensation Products   总被引:1,自引:0,他引:1  
Condensation products of urea and different aldehydes (formaldehyde, isobutyraldehyde, crotonaldehyde) are used in large amounts (more than 300,000 tons per year) as resins, binders, and insulating materials for industrial applications, as well as in controlled-release nitrogen fertilizer for greens, lawns, or bioremediation processes. The biodegradability of these condensates and the enzymic mechanism of their degradation was studied in mircoorganisms isolated from soil, which were able to use these compounds as the sole source of nitrogen for growth. Different pure cultures of both gram-positive and gram-negative bacteria completely degraded methylenediurea, dimethylenetriurea, isobutylidenediurea, and crotonylidenediurea to urea, ammonia, and the corresponding aldehydes and carbon dioxide. Enzymes initiating this degradation were purified and characterized and turned out to be different with regard to their regulation of expression, their physicobiochemical properties, and their reaction mechanism.  相似文献   
319.
Commercial forestry plantations as a postmining land use in the Upper Hunter Valley of New South Wales, Australia are restricted by both the poor nutrient availability of mining substrates and low regional rainfall. An experiment was conducted to investigate whether municipal waste products and saline groundwater from coal mining operations could improve early tree growth without impacting on the environment through salt accumulation and/or nutrient enrichment and changes in groundwater quality. Potential impacts were investigated by quantifying the nutrient cycling dynamics within the plantation using an input–output mass balance approach for exchangeable calcium (Ca2+), exchangeable magnesium (Mg2+), exchangeable potassium (K+), exchangeable sodium (Na+), nitrogen (N), and phosphorus (P). Measured inputs to and outputs from the available nutrient pool in the 0–30 cm of the overburden subsystem were used to estimate the net effect of unmeasured inputs and outputs (termed “residuals”). Residual values in the mass balance of the irrigated treatments demonstrated large leaching losses of exchangeable Ca, Mg, K, and Na. Between 96% and 103% of Na applied in saline mine-water irrigation was leached below the 0–30-cm soil profile zone. The fate of these salts beyond 30 cm is unknown, but results suggest that irrigation with saline mine water had minimal impact on the substrate to 30 cm over the first 2 years since plantation establishment. Accumulations of N and P were detected for the substrate amendments, suggesting that organic amendments (particularly compost) retained the applied nutrients with very little associated losses, particularly through leaching.  相似文献   
320.
The Arctic is nutrient limited, particularly by nitrogen, and is impacted by anthropogenic global warming which occurs approximately twice as fast compared to the global average. Arctic warming intensifies thawing of permafrost-affected soils releasing their large organic nitrogen reservoir. This organic nitrogen reaches hydrological systems, is remineralized to reactive inorganic nitrogen, and is transported to the Arctic Ocean via large rivers. We estimate the load of nitrogen supplied from terrestrial sources into the Arctic Ocean by sampling in the Lena River and its Delta. We took water samples along one of the major deltaic channels in winter and summer in 2019 and sampling station in the central delta over a one-year cycle. Additionally, we investigate the potential release of reactive nitrogen, including nitrous oxide from soils in the Delta. We found that the Lena transported nitrogen as dissolved organic nitrogen to the coastal Arctic Ocean and that eroded soils are sources of reactive inorganic nitrogen such as ammonium and nitrate. The Lena and the Deltaic region apparently are considerable sources of nitrogen to nearshore coastal zone. The potential higher availability of inorganic nitrogen might be a source to enhance nitrous oxide emissions from terrestrial and aquatic sources to the atmosphere.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01665-0.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号