首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   739篇
  免费   27篇
  国内免费   251篇
安全科学   34篇
废物处理   19篇
环保管理   89篇
综合类   465篇
基础理论   119篇
污染及防治   214篇
评价与监测   58篇
社会与环境   17篇
灾害及防治   2篇
  2024年   1篇
  2023年   16篇
  2022年   30篇
  2021年   22篇
  2020年   23篇
  2019年   29篇
  2018年   24篇
  2017年   24篇
  2016年   42篇
  2015年   56篇
  2014年   52篇
  2013年   61篇
  2012年   65篇
  2011年   68篇
  2010年   56篇
  2009年   70篇
  2008年   64篇
  2007年   66篇
  2006年   47篇
  2005年   25篇
  2004年   28篇
  2003年   20篇
  2002年   30篇
  2001年   15篇
  2000年   21篇
  1999年   11篇
  1998年   2篇
  1997年   11篇
  1996年   8篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1974年   2篇
排序方式: 共有1017条查询结果,搜索用时 684 毫秒
301.
In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses (<0.8%) were observed in northern Finland and northern UK. The highest concentrations (≥1.6%) were found in parts of Belgium, France, Germany, Slovakia, Slovenia and Bulgaria. The asymptotic relationship between the nitrogen concentrations in mosses and EMEP modelled nitrogen deposition (averaged per 50 km × 50 km grid) across Europe showed less scatter when there were at least five moss sampling sites per grid. Factors potentially contributing to the scatter are discussed. In Switzerland, a strong (r2 = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution.  相似文献   
302.
Paired indoor and outdoor concentrations of fine and coarse particulate matter (PM), PM2.5 reflectance [black carbon(BC)], and nitrogen dioxide (NO2) were determined for sixteen weeks in 2008 at four elementary schools (two in high and two in low traffic density zones) in a U.S.-Mexico border community to aid a binational health effects study. Strong spatial heterogeneity was observed for all outdoor pollutant concentrations. Concentrations of all pollutants, except coarse PM, were higher in high traffic zones than in the respective low traffic zones. Black carbon and NO2 appear to be better traffic indicators than fine PM. Indoor air pollution was found to be well associated with outdoor air pollution, although differences existed due to uncontrollable factors involving student activities and building/ventilation configurations. Results of this study indicate substantial spatial variability of pollutants in the region, suggesting that children’s exposures to these pollutants vary based on the location of their school.  相似文献   
303.
UASB反应器中厌氧氨氧化菌的影响因素研究   总被引:3,自引:0,他引:3  
在UASB反应器中接种实验室已经驯化好的厌氧氨氧化颗粒污泥,对其进行厌氧氨氧化菌活性提高和影响因素的实验研究。研究表明厌氧氨氧化菌对NH4+-N和N02--N的适宜浓度负荷均为200mg/L,适宜水力停留时间HRT、温度、pH和进水基质比(N02--N/NH4+-N)分别为2h、30~35℃、7.5~8.5和0.95~1.2,NH4+-N、NO2--N和TN的平均去除率分别为97.1%、98.3%和92.7%。  相似文献   
304.
Stable nitrogen and oxygen isotope ratios of nitrate (δ15N-NO3 and δ18O-NO3) have recently been used to identify nitrogen sources in water environments. However, there have been no investigations designed to determine nitrate isotopes in non-point sources in urban areas for evaluating the impact of surface deposits on nitrogen in surface runoff. In this study, we collected rainwater, surface runoff and surface deposits (road dust, roof dust and soil) to evaluate the nitrogen sources in surface runoff using nitrate isotopes. There were no large differences in δ15N-NO3 among rainwater (−0.3‰ to 1.5‰), surface runoff (−2.7‰ to 0.4‰), leachates from road dust (−5.8‰ to 6.2‰) and soil (−11.5‰ to 0.6‰). In contrast, the δ18O-NO3 in surface runoff (28.5-47.9‰) was lower than that in rainwater (62.7-78.6‰), and higher than that in leachates from road dust (6.1-27.6‰) and soil (−1.1‰ to 6.6‰). δ18O-NO3 is a useful indicator for evaluating the NO3-N sources in surface runoff. Using this indicator, NO3-N from road dust was estimated to account for more than half of the NO3-N in surface runoff. This is consistent with a result based on a comparison of their loads per unit surface between rainwater and surface runoff, which also showed that most of the nitrogen in surface runoff was derived from surface deposits.  相似文献   
305.
For more than a decade, anthropogenic sulfur (S) and nitrogen (N) deposition has been identified as a key pollutant in the Arctic. In this study new critical loads of acidity (S and N) were estimated for terrestrial ecosystems north of 60° latitude by applying the Simple Mass Balance (SMB) model using two critical chemical criteria (Al/Bc = 1 and ANCle = 0). Critical loads were exceeded in large areas of northern Europe and the Norilsk region in western Siberia during the 1990s, with the more stringent criterion (ANCle = 0) showing the larger area of exceedance. However, modeled deposition estimates indicate that mean concentrations of sulfur oxides and total S deposition within the Arctic almost halved between 1990 and 2000. The modeled exceeded area is much reduced when currently agreed emission reductions are applied, and almost disappears under the implementation of maximum technically feasible reductions by 2020. In northern North America there was no exceedance under any of the deposition scenarios applied. Modeled N deposition was less than 5 kg ha−1 y−1 almost across the entire study area for all scenarios; and therefore empirical critical loads for the eutrophying impact of nitrogen are unlikely to be exceeded. The reduction in critical load exceedances is supported by observed improvements in surface water quality, whereas the observed extensive damage of terrestrial vegetation around the mining and smelter complexes in the area is mainly caused by direct impacts of air pollution and metals.  相似文献   
306.
Total nitrogen in transplanted and in situ lichen thalli of Xanthoria parietina were related to ambient ammonia air concentrations measured with passive ALPHA (Adapted Low-cost Passive High Absorption) diffusion samplers in Denmark. Transplants and ALPHA samplers were exposed four months in a transect on heathland close to a pig farm. Monthly mean ammonia concentrations declined exponentially approaching background levels after 300 m. Nitrogen content of the lichen transplants tended to decline with distance, though only a few stations were significantly different from each other. Where ammonia concentrations were high, maximum content of nitrogen was reached after one month of exposure. Conversely, at sites with background concentrations, it took several months to reach a statistically significant uptake. The correlation between ammonia concentration in the air and in situ X. parietina was significant.  相似文献   
307.
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered.  相似文献   
308.
The content of organic N has been shown in many studies to increase during the passage of rain water through forest canopies. The source of this organic N is unknown, but generally assumed to come from canopy processing of wet or dry-deposited inorganic N. There have been very few experimental studies in the field to address the canopy formation or loss of organic N. We report two studies: a Scots pine canopy exposed to ammonia gas, and a Sitka spruce canopy exposed to ammonium and nitrate as wet deposition. In both cases, organic N deposition in throughfall was increased, but only represented a small fraction (<10%) of the additional inorganic N supplied, suggesting a limited capacity for net organic N production, similar in both conifer canopies under Scottish summertime conditions, of less than 1.6 mmol N m−2 mth−1 (equivalent to 3 kg N ha−1 y−1).  相似文献   
309.
A procedure for the assessment of emissions of nitrogen (N) species (ammonia, nitrous oxide, nitric oxide, di-nitrogen) from the manure management system is developed, which treats N pools and flows including emissions strictly according to conservation of mass criteria. As all relevant flows in the husbandry of mammals are depicted, the methodology is considered a Tier 3 approach in IPCC terminology or a detailed methodology in UN ECE terminology. The importance of accounting for all N species is illustrated by comparing emission estimates obtained using this approach with those obtained from the application the present detailed/Tier 2 methodology.  相似文献   
310.
Nitrate and ammonium concentration in wet deposition detrimentally impacted a sensitive pollution indicator species irrespective of the nitrogen dose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号