首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   776篇
  免费   14篇
  国内免费   94篇
安全科学   36篇
废物处理   31篇
环保管理   78篇
综合类   333篇
基础理论   82篇
污染及防治   229篇
评价与监测   79篇
社会与环境   15篇
灾害及防治   1篇
  2023年   10篇
  2022年   11篇
  2021年   29篇
  2020年   22篇
  2019年   15篇
  2018年   13篇
  2017年   16篇
  2016年   19篇
  2015年   24篇
  2014年   30篇
  2013年   43篇
  2012年   41篇
  2011年   72篇
  2010年   38篇
  2009年   52篇
  2008年   51篇
  2007年   44篇
  2006年   46篇
  2005年   33篇
  2004年   26篇
  2003年   39篇
  2002年   26篇
  2001年   24篇
  2000年   30篇
  1999年   17篇
  1998年   23篇
  1997年   21篇
  1996年   11篇
  1995年   8篇
  1994年   14篇
  1993年   17篇
  1992年   12篇
  1991年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有884条查询结果,搜索用时 142 毫秒
281.
微污染水源水的控制技术   总被引:25,自引:0,他引:25  
饮用水水源的污染日益严重,对人类的健康和传统净水工艺都构成了较大的威胁,更加剧了水资源的危机,文中阐述了近年来我国处理微污染水源水的主要技术,强化混凝处理技术,臭氧活性炭联用深度处理技术,生物活性炭深度处理技术,光催化氧化法技术,膜法深度处理技术,吸附预处理技术,生物预处理技术等,并给出了各种处理方法的优缺点。  相似文献   
282.
新型转式垃圾焚烧炉焚烧技术研究   总被引:1,自引:0,他引:1  
研究了新型转式焚烧炉稳定燃烧工艺和有机垃圾在新型转式焚烧炉中焚烧过程HCl和NOx释放和控制特性。结果表明,新型转式焚烧炉采用二次燃烧技术,能有效控制和降低二次污染物的生成。  相似文献   
283.
▪ Overviewed evolution and environmental applications of stabilized nanoparticles. ▪ Reviewed theories on particle stabilization for enhanced reactivity/deliverability. ▪ Examined various in situ remediation technologies based on stabilized nanoparticles. ▪ Summarized knowledge on transport of stabilized nanoparticles in porous media. ▪ Identified key knowledge gaps and future research needs on stabilized nanoparticles. Due to improved soil deliverability and high reactivity, stabilized nanoparticles have been studied for nearly two decades for in situ remediation of soil and groundwater contaminated with organic pollutants. While large amounts of bench- and field-scale experimental data have demonstrated the potential of the innovative technology, extensive research results have also unveiled various merits and constraints associated different soil characteristics, types of nanoparticles and particle stabilization techniques. Overall, this work aims to critically overview the fundamental principles on particle stabilization, and the evolution and some recent developments of stabilized nanoparticles for degradation of organic contaminants in soil and groundwater. The specific objectives are to: 1) overview fundamental mechanisms in nanoparticle stabilization; 2) summarize key applications of stabilized nanoparticles for in situ remediation of soil and groundwater contaminated by legacy and emerging organic chemicals; 3) update the latest knowledge on the transport and fate of stabilized nanoparticles; 4) examine the merits and constraints of stabilized nanoparticles in environmental remediation applications; and 5) identify the knowledge gaps and future research needs pertaining to stabilized nanoparticles for remediation of contaminated soil and groundwater. Per instructions of this invited special issue, this review is focused on contributions from our group (one of the pioneers in the subject field), which, however, is supplemented by important relevant works by others. The knowledge gained is expected to further advance the science and technology in the environmental applications of stabilized nanoparticles.  相似文献   
284.
The nonlinear sorption of hydrophobic organic contaminants (HOCs) could be changed to linear sorption by the suppression of coexisting solutes in natural system, resulting in the enhancement of mobility, bioavailability and risks of HOCs in the environment. In previous study, inspired from the competitive adsorption on activated carbon (AC), the displaceable fraction of HOCs sorption to soot by competitor was attributed to the adsorption on elemental carbon fraction of soot (EC-Soot), while the linear and nondisplaceable fraction was attributed to the partition in authigenic organic matter of soot (OM-Soot). In this study, however, we observed that the linear and nondisplaceable fraction of HOC (naphthalene) to a diesel soot (D-Soot) by competitor (phenanthrene or p-nitrophenol) should be attributed to not only the linear partition in OM-Soot, but also the residual linear adsorption on EC-Soot. We also observed that the competition on the surface of soot dominated by external surface was different from that of AC dominated by micropore surface, i.e., complete displacement of HOCs by p-nitrophenol could occur for the micropore surface of AC, but not for the external surface of soot. These observations were obtained through the separation of EC-Soot and OM-Soot from D-Soot with organic-solvent extraction and the sorption comparisons of D-Soot with an AC (ACF300) and a multiwalled carbon nanotube (MWCNT30). The obtained results would give new insights to the sorption mechanisms of HOCs by soot and help to assess their environmental risks.  相似文献   
285.
Biochar as an emerging carbonaceous material has exhibited a great potential in environmental application for its perfect adsorption ability. However, there are abundant persistent free radicals (PFRs) in biochar, so the direct and indirect PFRs-mediated removal of organic and inorganic contaminants by biochar was widely reported. In order to comprehend deeply the formation of PFRs in biochar and their interactions with contaminants, this paper reviews the formation mechanisms of PFRs in biochar and the PFRs-mediated environmental applications of biochar in recent years. Finally, future challenges in this field are also proposed. This review provides a more comprehensive understanding on the emerging applications of biochar from the viewpoint of the catalytic role of PFRs.  相似文献   
286.
Cadmium (Cd) contamination in paddy soil has caused public concern. The uptake of Cd by rice plants depends on soil Cd mobility, which is in turn substantially influenced by organic matter (OM). In this review, we first summarize the fate of Cd in soil and the role of OM. We then focus on the effects of OM on Cd mobility in paddy soil and the factors influencing the remedial effectiveness of OM amendments. We further discuss the performance of straw incorporation in the remediation of Cd-contaminated paddy soils reported in laboratory and field studies. Considering the huge production of organic materials (such as straw) in agriculture, the use of natural OM for soil remediation has obvious appeal due to the environmental benefits and low cost. Although there have been successful application cases, the properties of OM amendments and soil can significantly affect the remedial performance of the OM amendments. Importantly, straw incorporation alone does not often decrease the mobility of Cd in soil or the Cd content in rice grains. Careful evaluation is required when considering natural OM amendments, and the factors and mechanisms that influence their remedial effectiveness need further investigation in paddy soil with realistic Cd concentrations.  相似文献   
287.
Mercury (Hg) could be microbially methylated to the bioaccumulative neurotoxin methylmercury (MeHg), raising health concerns. Understanding the methylation of various Hg species is thus critical in predicting the MeHg risk. Among the known Hg species, mercury sulfide (HgS) is the largest Hg reservoir in the lithosphere and has long been considered to be highly inert. However, with advances in the analytical methods of nanoparticles, HgS nanoparticles (HgS NPs) have recently been detected in various environmental matrices or organisms. Furthermore, pioneering laboratory studies have reported the high bioavailability of HgS NPs. The formation, presence, and transformation (e.g., methylation) of HgS NPs are intricately related to several environmental factors, especially dissolved organic matter (DOM). The complexity of the behavior of HgS NPs and the heterogeneity of DOM prevent us from comprehensively understanding and predicting the risk of HgS NPs. To reveal the role of HgS NPs in Hg biogeochemical cycling, research needs should focus on the following aspects: the formation pathways, the presence, and the environmental behaviors of HgS NPs impacted by the dominant influential factor of DOM. We thus summarized the latest progress in these aspects and proposed future research priorities, e.g., developing the detection techniques of HgS NPs and probing HgS NPs in various matrices, further exploring the interactions between DOM and HgS NPs. Besides, as most of the previous studies were conducted in laboratories, our current knowledge should be further refreshed through field observations, which would help to gain better insights into predicting the Hg risks in natural environment.  相似文献   
288.
Many retailers take initiatives to reduce food waste, which can lead to enhanced sustainability, including reduced environmental impacts and cost savings. Another common environmental strategy in retail management is to increase the range of organic products. This study examined if organic food products have a higher level of waste, which thereby risk to counteract the environmental ambitions behind offering these products. The study also examined to what degree differences in waste level could be explained by turnover, shelf-life and wholesale pack size. In the study, six Swedish supermarkets provided data on all articles sold or wasted in the deli, meat, dairy and cheese departments during 2010 and 2011. 24 organic products were compared to their conventional counterparts; 22 of these had higher waste levels (from 1.5 to 29 times higher). Differences in wastage were also compared across departments; in all four departments, organic products as a group had higher waste percentage at all four departments. There was a negative correlation between the total mass sold of a product and the percentage waste. Also, longer shelf-life was associated with decreased waste, but only for products with low turnover. The systematic problem of retail food waste – particularly of organic products and other products with a low turnover – may be mitigated by increasing turnover, by stocking products with longer shelf-life or by decreasing the ordered volume (e.g. through decreased wholesale pack sizes).  相似文献   
289.
This study reports the feasibility of using municipal wastewater biosolids as an alternative carbon source for biological phosphorus removal. The biosolids were treated by a lowtemperature, thermal alkaline hydrolysis process patented by Lystek International Inc.(Cambridge, ON, Canada) to produce short-chain volatile fatty acids and other readily biodegradable organics. Two sequencing batch reactors(SBRs) were operated with synthetic volatile fatty acids(Syn VFA) and readily biodegradable organics produced from the alkaline hydrolysis of municipal wastewater biosolids(Lystek) as the carbon source, respectively.Municipal wastewaters with different strengths and COD:N:P ratios were tested in the study. The reactors' performances were compared with respect to nitrogen and phosphorus removal. It was observed that phosphorus removal efficiencies were between 98%–99% and 90%–97% and nitrogen removal efficiencies were 78%–81%, and 67% for the Syn VFA and Lystek, respectively. However, the kinetics for phosphorus release and uptake during the anaerobic and aerobic stages with Lystek were observed to be significantly lower than Syn VFA due to the presence of higher order VFAs(C4 and above) and other fermentable organics in the Lystek.  相似文献   
290.
The organic matter and two types of disinfection byproduct(DBP) precursors in micropolluted source water were removed using an iron–carbon micro-electrolysis(ICME)combined with up-flow biological aerated filter(UBAF) process. Two pilot-scale experiments(ICME-UBAF and UBAF alone) were used to investigate the effect of the ICME system on the removal of organic matter and DBP precursors. The results showed that ICME pretreatment removed 15.6% of dissolved organic matter(DOM)and significantly improved the removal rate in the subsequent UBAF process. The ICME system removed 31% of trichloromethane(TCM) precursors and 20% of dichloroacetonitrile(DCAN) precursors. The results of measurements of the molecular weight distribution and hydrophilic fractions of DOM and DBP precursors showed that ICME pretreatment played a key role in breaking large-molecular-weight organic matter into low-molecular-weight components, and the hydrophobic fraction into hydrophilic compounds, which was favorable for subsequent biodegradation by UBAF.Three-dimensional fluorescence spectroscopy(3D-EEM) further indicated that the ICME system improved the removal of TCM and DCAN precursors. The biomass analysis indicated the presence of a larger and more diverse microbial community in the ICME-UBAF system than for the UBAF alone. The high-throughput sequencing results revealed that domination of the genera Sphingomonas, Brevundimonas and Sphingorhabdus contributed to the better removal of organic matter and two types of DBP precursors. Also, Nitrosomonas and Pseudomonas were beneficial for ammonia removal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号