首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   3篇
  国内免费   2篇
安全科学   9篇
废物处理   1篇
综合类   7篇
基础理论   5篇
灾害及防治   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1996年   2篇
排序方式: 共有23条查询结果,搜索用时 78 毫秒
21.
Landfill gas (LFG) utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study. Pressure swing adsorption technology was used in LFG purification, and laboratory experiment, pilot-scale test, and on-site demonstration were carried out in Shenzhen, China. In the laboratory experiment, A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents. The optimal adsorption pressure and adsorption time were 0.25 MPa and 2 min, respectively, under which the product generation rate was 4.5 m3/h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel (GB18047-2000), when the air concentration in feed gas was under 10.96%. The demonstration project was composed of a collection system, production system, and utilization system. The drive performance, environmental protection performance, and economic feasibility of the product gas — as alternative fuel in passenger car, truck, and bulldozer—were tested, showing the feasibility technology for LFG utilization.  相似文献   
22.
Realization of the adverse effects of volatile organic compounds (VOCs) in the environment and the consequent enforcement of stringent regulations, accelerated the research and developmental activities across the world for achieving economic solutions. As a result, several advanced concepts of adsorption, a commercialized separation technology, have emerged. The availability of so many options means the industrialists, consultants and researchers experience problems in selecting the appropriate one. The present paper, through analysis of the type and concentration of VOCs, VOCs vs adsorbent suitability, the extent of separation required, and different adsorption techniques based on traditional and new advanced concepts, is an attempt to establish a qualitative guideline for the selection of the appropriate technique for recovery of VOCs.  相似文献   
23.
Landfill gas (LFG) utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study. Pressure swing adsorption technology was used in LFG purification, and laboratory experiment, pilot-scale test, and on-site demonstration were carried out in Shenzhen, China. In the laboratory experiment, A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents. The optimal adsorption pressure and adsorption time were 0.25 MPa and 2 min, respectively, under which the product generation rate was 4.5 m3/h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel (GB18047-2000), when the air concentration in feed gas was under 10.96%. The demonstration project was composed of a collection system, production system, and utilization system. The drive performance, environmental protection performance, and economic feasibility of the product gas — as alternative fuel in passenger car, truck, and bulldozer—were tested, showing the feasibility technology for LFG utilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号