首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12337篇
  免费   847篇
  国内免费   3852篇
安全科学   740篇
废物处理   1032篇
环保管理   2004篇
综合类   8395篇
基础理论   1018篇
环境理论   1篇
污染及防治   2717篇
评价与监测   874篇
社会与环境   193篇
灾害及防治   62篇
  2024年   27篇
  2023年   249篇
  2022年   307篇
  2021年   410篇
  2020年   426篇
  2019年   338篇
  2018年   341篇
  2017年   397篇
  2016年   499篇
  2015年   549篇
  2014年   696篇
  2013年   814篇
  2012年   900篇
  2011年   973篇
  2010年   676篇
  2009年   918篇
  2008年   702篇
  2007年   999篇
  2006年   1061篇
  2005年   805篇
  2004年   705篇
  2003年   707篇
  2002年   585篇
  2001年   480篇
  2000年   469篇
  1999年   403篇
  1998年   328篇
  1997年   260篇
  1996年   181篇
  1995年   184篇
  1994年   171篇
  1993年   134篇
  1992年   81篇
  1991年   52篇
  1990年   27篇
  1989年   18篇
  1988年   20篇
  1987年   13篇
  1986年   24篇
  1985年   10篇
  1984年   8篇
  1982年   10篇
  1981年   9篇
  1980年   11篇
  1979年   10篇
  1978年   8篇
  1974年   5篇
  1973年   10篇
  1972年   5篇
  1971年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
781.
Ozonation as final wastewater (WW) polishing step, following conventional activated sludge treatment is increasingly implemented in sewage treatment for contaminant degradation to prevent surface water pollution. While the oxidative degradation of chemicals has been extensively investigated, the in vivo toxicological characteristics of ozonated whole effluents are rarely a matter of research.In the present study, whole effluents were toxicologically evaluated with an in vivo test battery before and after full-scale ozonation and subsequent sand filtration on site at a treatment plant. One aquatic plant (duckweed, Lemna minor) and five invertebrate species of different systematic groups (Lumbriculus variegatus, Chironomus riparius, Potamopyrgus antipodarum, Daphnia magna) were exposed to the effluents in a flow-through-designed test system with a test duration of 7-28 d.None of the considered toxicity endpoints correlated with the pollutant elimination. A tendency towards an increased toxicity after ozonation was apparent in three of the test systems showing [statistically] significant adverse effects in the L. variegatus toxicity test (decrease in reproduction and biomass). After sand filtration, adverse effects were reduced to a similar level like after conventional treatment. Solely the Daphnia reproduction test revealed beneficial effects after ozonation in combination with sand filtration.Results of the test battery indicate the formation of adverse oxidation products during WW ozonation. L. variegatus appeared to be the most sensitive of the five test species. Sand filtration effectively removes or detoxifies toxic oxidation products, as toxic effects were subsequently reduced to the level after conventional treatment.  相似文献   
782.
Adsorption of natural organic matter (NOM) on nanoparticles can have dramatic impacts on particle dispersion resulting in altered fate and transport as well as bioavailability and toxicity. In this study, the adsorption of Suwannee River humic acid (SRHA) on silver nanoparticles (nano-Ag) was determined and showed a Langmuir adsorption at pH 7 with an adsorption maximum of 28.6 mg g−1 nano-Ag. It was also revealed that addition of <10 mg L−1 total organic carbon (TOC) increased the total Ag content suspended in the aquatic system, likely due to increased dispersion. Total silver content decreased with concentrations of NOM greater than 10 mg TOC L−1 indicating an increase in nanoparticle agglomeration and settling above this concentration. However, SRHA did not have any significant effect on the equilibrium concentration of ionic Ag dissolved in solution. Exposure of Daphnia to nano-Ag particles (50 μg L−1 and pH 7) produced a linear decrease in toxicity with increasing NOM. These results clearly indicate the importance of water chemistry on the fate and toxicity of nanoparticulates.  相似文献   
783.
For several decades, perfluorooctane sulfonate (PFOS) has widely been used as a fluorinated surfactant in aqueous film forming foams used as hydrocarbon fuel fire extinguishers. Due to concerns regarding its environmental persistence and toxicological effects, PFOS has recently been replaced by novel fluorinated surfactants such as Forafac®1157, developed by the DuPont company. The major component of Forafac®1157 is a 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), and a link between the trade name and the exact chemical structure is presented here to the scientific community for the first time. In the present work, the structure of the 6:2 FTAB was elucidated by 1H, 13C and 19F nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. Moreover, its major metabolites from blue mussel (Mytilus edulis) and turbot (Scophthalmus maximus) and its photolytic transformation products were identified. Contrary to what has earlier been observed for PFOS, the 6:2 FTAB was extensively metabolized by blue mussel and turbot exposed to Forafac®1157. The major metabolite was a deacetylated betaine species, from which mono- and di-demethylated metabolites also were formed. Another abundant metabolite was the 6:2 fluorotelomer sulfonamide. In another experiment, Forafac®1157 was subjected to UV-light induced photolysis. The experimental conditions aimed to simulate Arctic conditions and the deacetylated species was again the primary transformation product of 6:2 FTAB. A 6:2 fluorotelomer sulfonamide was also formed along with a non-identified transformation product. The environmental presence of most of the metabolites and transformation products was qualitatively demonstrated by analysis of soil samples taken in close proximity to an airport fire training facility.  相似文献   
784.
The paper reports unforeseen results of increased toxicity of water, subsequent to interactions between CdSe/ZnS quantum dots (QDs), phenol and toluene under UV irradiation. The consistent pattern of changes in measured toxicity (TU) was observed and correlated with degradation of phenol and/or toluene. Spearman rank coefficients (SRCs) for data pairs sum-parameters vs. TU were calculated. The highest correlation between toxicity and degradation by-products was observed for hydroquinone (0.86) and catechol (0.89). The presence of QDs in tested concentration range in the absence of UV has shown low toxicity and no interactions with phenol and/or toluene. The leak of constituent core and shell metal ions was observed. The minor differences in physical characteristics of tested QDs of the same chemical composition led to rather different degradation patterns of phenol and toluene, and the amount of leak of the metal ions as well.  相似文献   
785.
AT Lemos  MV Coronas  JA Rocha  VM Vargas 《Chemosphere》2012,89(9):1126-1134
Organisms in the environment are exposed to a mixture of pollutants. Therefore the purpose of this study was to analyze the mutagenicity of organic and inorganic responses in two fractions of particulates (TSP and PM2.5) and extracts (organic and aqueous). The mutagenicity of organic and aqueous particulate matter extracts from urban-industrial and urban-residential areas was evaluated by Salmonella/microsome assay, through the microsuspension method, using strain TA98 with and without liver metabolization. Additionally, strains YG1021 and YG1024 (nitro-sensitive) were used for organic extracts. Aqueous extracts presented negative responses for mutagenesis and cytotoxicity was detected in 50% of the samples. In these extracts the presence of potential bioavailable metals was identified. All organic extracts presented mutagens with a higher potential associated with PM2.5. This study presents a first characterization of PM2.5 in Brazil, through the Salmonella/microsome assay. The evaluation strategy detected the anthropic influence of groups of compounds characteristically found in urban and industrial areas, even in samples with PM values in accordance with quality standards. Thus, the use of a genotoxic approach in areas under different anthropic influences will favor the adoption of preventive measures in the health/environment relation.  相似文献   
786.
G Matafonova  V Batoev 《Chemosphere》2012,89(6):637-647
Excilamps as modern mercury-free sources of narrow-band UV radiation represent an attractive alternative in environmental applications. This review focuses on recent studies on the water and surface decontamination with excilamps by means of direct photolysis and advanced oxidation processes. To date, direct photolysis and advanced oxidation processes (AOPs) such as UV/H2O2, UV/Fenton and UV/O3 have been applied for degradation of organic compounds (mainly, phenols, dyes and herbicides) in model aqueous solutions. Special emphasis is placed on studies combining UV irradiation (as a pre-treatment or post-treatment step) with biological treatment. In this review, the efficiencies of direct UV, UV/H2O2 and UV/TiO2 processes for inactivation of a variety of pathogenic microorganisms in water and on surfaces are discussed. The analysis of the literature shows that more works need to be done on scaling up the processes, degradation/mineralization of target pollutant(s) in real effluents and evaluation of energy requirements.  相似文献   
787.
The goal of this study was to compare removal efficiencies of tetrabromobisphenol A (TBBPA) using typical wastewater treatment technologies, and to identify the most significant mechanisms of removal. Two types of municipal wastewater reactors were studied: a full-scale conventional activated sludge (CAS) reactor with tertiary treatment; and three pilot-scale membrane bioreactors (MBRs) having different sludge retention times (SRTs). All four reactors were fed the same influent. A third reactor type, a membrane aerated biofilm reactor (MABR) was fed tap water, ammonia, and TBBPA. TBBPA in municipal influent ranged from 1 to 41 ng L−1 (n = 10). The CAS effluent had an average TBBPA concentration of 0.7 ± 1.3 ng L−1 (n = 3). Effluent concentrations from the MBRs were an average of 6 ± 6 ng L−1 TBBPA (n = 26). Significant TBBPA removal was observed in the MABR throughout the 5 week of study (p ? 0.05). Removal of TBBPA from wastewater treatment was found to be due to a combination of adsorption and biological degradation. Based on experimental results, nitrification is likely a key process therein. No significant relationship between removal of TBBPA and SRT was identified (p ? 0.05).  相似文献   
788.
光催化过程中羟基自由基的产生与效能   总被引:1,自引:0,他引:1  
采用异丙醇淬灭的方法考察了羟基自由基在光催化氧化酸性橙II过程中的产生和效能,研究了TiO2(P-25)的浓度、异丙醇的用量、酸性橙II的初始浓度、初始pH条件和天然共存离子对羟基自由基贡献率的影响。结果表明,在TiO2(P-25)浓度提高时羟基自由基的贡献率逐步提高并稳定在77.6%,异丙醇的投加量对羟基自由基的贡献率影响不大,酸性橙II初始浓度的提高则使羟基自由基的贡献率降低。在中性pH条件下羟基自由基的贡献率最高,酸性或碱性条件下较低。天然共存离子中HCO3-对羟基自由基的淬灭效应最强,F-的淬灭效应最弱。  相似文献   
789.
在好氧反应器中,将海泥通过海水和营养物质培养成新型的活性污泥,在处理含盐废水时有较好的活性和沉降性能,对这种新型的活性污泥我们称其为海洋活性污泥。通过10周的培养,海泥的污泥体积指数(SVI)从最初的19 mL/g升高到70 mL/g,对有机废水处理12 h后高锰酸盐指数(CODMn)降解率达到90%,氨氮降解率达到45%。在污泥培养时,营养物质投加频率为一日一次最有利于污泥的培养,又葡萄糖比淀粉更有利于污泥的培养。对于含盐有机废水的处理,海洋活性污泥也比传统活性污泥有优势,甚至对于含盐量6%的高盐有机废水,处理12 h后能达到CODMn降解率达为70%,氨氮降解率达到30%。当NaCl浓度高于6%,海洋活性污泥仍具有一定的活性,但仍能观察到明显的抑制作用。此外,海洋活性污泥具有比传统活性污泥更强的盐度变化抗性,甚至在低盐度下盐浓度变化时,海洋活性污泥的氨氮降解稳定性也优于传统活性污泥。  相似文献   
790.
Background, aim, and scope  Ionic liquids are regarded as essentially “green” chemicals because of their insignificant vapor pressure and, hence, are a good alternative to the emissions of toxic conventional volatile solvents. Not only because of their attractive industrial applications, but also due to their very high stability, ionic liquids could soon become persistent contaminants of technological wastewaters and, moreover, break through into natural waters following classical treatment systems. The removal of harmful organic pollutants has forced the development of new methodologies known as advanced oxidation processes (AOPs). Among them, the Fenton and Fenton-like reactions are usually modified by the use of a higher hydrogen peroxide concentration and through different catalysts. The aim of this study was to assess the effect of hydrogen peroxide concentration on degradation rates in a Fenton-like system of alkylimidazolium ionic liquids with alkyl chains of varying length and 3-methyl-N-butylpyridinium chloride. Materials and methods  The ionic liquids were oxidized in dilute aqueous solution in the presence of two different concentrations of hydrogen peroxide. All reactions were performed in the dark to prevent photoreduction of Fe(III). The concentrations of ionic liquids during the process were monitored with high-performance liquid chromatography. Preliminary degradation pathways were studied with the aid of 1H NMR. Results  Degradation of ionic liquids in this system was quite effective. Increasing the H2O2 concentration from 100 to 400 mM improved ionic liquid degradation from 57–84% to 87–100% after 60 min reaction time. Resistance to degradation was weaker, the shorter the alkyl chain. Discussion  The compound omimCl was more resistant to oxidation then other compounds, which suggests that the oxidation rates of imidazolium ionic liquids by OH· are structure-dependent and are correlated with the n-alkyl chain length substituted at the N-1-position. The level of degradation was dependent on the type of head group. Replacing the imidazolium head group with pyridinium increased resistance to degradation. Nonetheless, lengthening the alkyl chain from four to eight carbons lowered the rate of ionic liquid degradation to a greater extent than changing the head group from imidazolium to pyridinium. 1H-NMR spectra show, in the first stage of degradation, that it is likely that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Conclusions  The proposed method has proven to be an efficient and reliable method for the degradation of imidazolium ionic liquids by a Fenton-like reagent deteriorated with lengthening n-alkyl substituents and by replacing the imidazolium head group with pyridinium. The enhanced resistance of 1-butyl-3-methylpyridinium chloride when the resistance of imidazolium ionic liquids decreases with increasing H2O2 concentration is probably indicative of a change in the degradation mechanism in a vigorous Fenton-like system. H-NMR spectra showed, in the first stage of degradation, that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Recommendations and perspectives  Since ionic liquids are now one of the most promising alternative chemicals of the future, the degradation and waste management studies should be integrated into a general development research of these chemicals. In the case of imidazolium and pyridinium ionic liquids that are known to be resistant to bio- or thermal degradation, studies in the field of AOPs should assist the future structural design as well as tailor the technological process of these chemicals  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号