首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1013篇
  免费   10篇
  国内免费   39篇
安全科学   31篇
废物处理   195篇
环保管理   240篇
综合类   379篇
基础理论   47篇
污染及防治   82篇
评价与监测   71篇
社会与环境   15篇
灾害及防治   2篇
  2023年   7篇
  2022年   17篇
  2021年   14篇
  2020年   26篇
  2019年   13篇
  2018年   7篇
  2017年   10篇
  2016年   18篇
  2015年   21篇
  2014年   113篇
  2013年   70篇
  2012年   34篇
  2011年   68篇
  2010年   18篇
  2009年   47篇
  2008年   37篇
  2007年   57篇
  2006年   55篇
  2005年   26篇
  2004年   36篇
  2003年   43篇
  2002年   45篇
  2001年   38篇
  2000年   43篇
  1999年   31篇
  1998年   41篇
  1997年   28篇
  1996年   22篇
  1995年   11篇
  1994年   37篇
  1993年   12篇
  1992年   6篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有1062条查询结果,搜索用时 984 毫秒
361.
This Special Issue provides several different perspectives on the complex issue of packaging waste recycling. It comprises a diverse and rich set of contributions with insights from very different disciplines that range from economics to engineering. All types of “costs and benefits” are addressed in this collection of articles. In addition to the economic and strictly financial impacts of selective collection and sorting of packaging waste, several authors discuss other types of impacts, such as the environmental and social ones. The reader will find articles that address recycling systems as a whole, pieces that focus on specific impacts and detailed discussions of particular material streams or waste management strategies. The Special Issue represents an indispensable resource for academics, policy-makers and practitioners with interests in recycling and packaging waste management.  相似文献   
362.
This study revealed the relationship between the presence of calcium impurities and ammoniacal nitrogen concentration upon crystallization of struvite. The research hypothesis was that the presence of both calcium and high concentrations of ammoniacal nitrogen(328–1000 mg/L) in waste activated sludge may influence the struvite quality and acid stability. Hence, we studied the impact of Ca:Mg ratio upon morphology, particle size, purity and dissolution of struvite, in the presence of varying levels of excess ammoniacal nitrogen. X-ray diffraction revealed that up to 31.4%amorphous material was made which was assigned to hydroxyapatite. Increasing the ammoniacal nitrogen concentration and elevation of the Mg:Ca ratio maximized the presence of struvite. Struvite particle size was also increased by ammoniacal nitrogen as was twinning of the crystals. Tests with dilute solutions of organic acid revealed the sensitivity of struvite dissolution to the physical characteristics of the struvite. Smaller particles(21.2 μm) dissolved at higher rates than larger particles(35.86 μm). However,struvite dissolved rapidly as the p H was further reduced irrespective of the physical characteristics. Therefore, addition of struvite to low p H soils was not viewed as beneficial in terms of controlled nutrient release. Overall, this study revealed that waste activated sludge effluent with high ammoniacal nitrogen was prospective for synthesis of high quality struvite material.  相似文献   
363.
Cathodic reduction of CO2 and anodic oxidation of organic matters are crucial to methane-producing microbial electrolysis cell (MEC) applied in anaerobic digestion of waste activated sludge. However, cathodic CO2 reduction is usually restrained by slow metabolism rates of H2-utilizing methanogens and low electron-capturing capacity of CO2, which consequently slows down the anodic oxidation that participates to sludge disintegration. Herein, a strategy with adding nitrate as electron acceptor to foster electronic transfer between the anode and cathode was proposed to improve anodic oxidation. Results showed that the average efficiency of anodic oxidation in the nitrate-added MEC increased by 55.9%. Accordingly, volatile suspended solid removal efficiency in the nitrate-added MEC was 21.9% higher than that of control MEC. Although the initial cumulative methane production in the nitrate-added MEC was lower than that of control MEC, the cumulative methane production in 24?days was 8.9% higher. Fourier transform infrared spectroscopy analysis indicated that anodic oxidation of MEC with nitrate accelerated the disintegration of sludge flocs and cell walls. Calculation on current signal further revealed that anodic oxidation driven by cathodic nitrate reduction was the main mechanism responsible for the improved sludge digestion.  相似文献   
364.
Due to ever increasing quantities of waste materials and industrial by-products, solid waste management is the prime concern in the world. Scarcity of land-filling space and because of its ever increasing cost, recycling and utilization of industrial by-products and waste materials has become an attractive proposition to disposal. There are several types of industrial by-products and waste materials. The utilization of such materials in concrete not only makes it economical, but also helps in reducing disposal concerns. One such industrial by-product is waste foundry sand (SFS). Waste foundry sand is a by-product of ferrous and nonferrous metal casting industries. Foundries successfully recycle and reuse the sand many times in a foundry. When the sand can no longer be reused in the foundry, it is removed from the foundry and is termed as waste foundry sand.Published literature has shown that WFS could be used in manufacturing Controlled Low-Strength Materials (CLSM) and concrete. This paper presents an overview of some of the research published on the use of WFS in concrete. Effect of WFS on concrete properties such as compressive strength, splitting tensile strength, modulus of elasticity, freezing-thawing resistance, and shrinkage are presented.  相似文献   
365.
Solid waste management is one of the challenging problems worldwide and it is becoming more complex by the increase in population and subsequently the waste generated. In Malaysia, among industrial solid waste palm oil mill waste (POMW) contributes the highest share. Wastes from the oil palm mill includes palm oil mill effluent (POME), decanter cake, empty fruit bunches, seed shells and the fibre from mesocarp. Generally most of the waste generated is either disposed of via open dumping or used as fertilizers as such or as animal feed. Land application of POMW and POME is very common practice as it contains numbers of plant nutrients. Direct application of POMW into agricultural soil can result in a number of problems such as water pollution, leaching etc. To deal with these problems, vermicomposting of palm oil mill waste may be a sustainable waste management option.There are number of researches going on management of biomass residues from palm oil mill, but very few works are going on vermicomposting of these agro-industrial waste. Vermicomposting of POMW can be a good practice as it will also be helpful in recycling the useful plant nutrients and it is better than that of composting process. Present review deals with the various aspects of vermicomposting of POMW and its importance. Review also put forward the effect of potential application of vermicompost on plant growth. On the whole it looks for the possibility of vermicomposting of waste from palm oil mill as a sustainable waste management alternative.  相似文献   
366.
Global disposal strategies for waste cathode ray tubes   总被引:1,自引:0,他引:1  
The collection and management of waste electrical and electronic appliances around the world, and the possible negative environmental consequences have been an issue of current debate. Cathode ray tubes (CRTs) used as display screen for computer monitors and televisions contains large quantities of lead, estimated at between 0.5 and 4 kg, depending on the size of the CRT and has been identified as the most polluting of all electronic waste components. Having failed the tests used in the toxicity characterization of solid wastes, CRTs have been declared ‘hazardous’ and subsequently banned from landfills and incinerators in most developed countries. Presently, large quantities of CRTs are generated globally with only few developed countries having effective take back and sound management program. Meanwhile, large quantities of CRT-containing devices are being moved across frontiers into developing countries in the name of ‘reuse’ and ‘bridging the digital divide’. With near absence of recycling infrastructure for electronic wastes in most developing countries, waste CRTs are disposed of with MSW at open dumps and unsanitary landfills. This paper reviews the current practices in the management of CRTs around the world, with emphasis on the role of regulations, availability of recycling infrastructure, recycling/reuse routes, and export into developing countries. Inappropriate disposal of waste CRTs creates the opportunity for large-scale environmental contamination with heavy metals, especially lead. Appropriate disposal routes are required globally in the management of CRTs in order to mitigate environmental contamination and human exposure to toxins.  相似文献   
367.
Economic instrument is indubitably perceived as effective for encouraging or forcing contractors to conduct environmentally friendly construction practices. Previous studies in relation to this topic mainly put emphasis on economic analysis of construction and demolition (C&D) waste management from a static point of view, which failed to consider its dynamics nature by integrating all essential activities throughout the waste chain. This paper is thus intended to highlight the dynamics and interrelationships of C&D waste management practices and analyze the cost-benefit of this process using a system dynamics approach. Data related to concrete and aggregate of a construction project in Shenzhen was collected for the application of the proposed model. The findings reveal that net benefits from conducting C&D waste management will occur, but a higher landfill charge will lead to a higher net benefit, as well as an earlier realization of the net benefit. In addition, the general public under a higher landfill charge will suffer from a higher environmental cost caused by illegal dumping. The simulation results also suggest that current regulation in Shenzhen should be promoted to facilitate a dramatic increase in net benefit from the implementation of C&D waste management. This research is of value in facilitating better understanding on the dynamics of C&D waste management activities throughout the waste chain, as well as providing a tool for simulating the cost-benefit of C&D waste management practices over the project duration.  相似文献   
368.
Currently the construction and demolition (C&D) waste collection system in Spain is managed in a decentralized manner by each sub-contracted company. This lack of comprehensive strategy for C&D waste management causes a confusing and sometimes individual attitude regarding the different measures for C&D waste. Therefore effective waste management should be enforced. Construction stakeholders have wide range of best practices in C&D waste management that can be implemented, so they need to be assessed for their effectiveness.The aim of this research study is to assist construction stakeholders in making a decision on C&D waste management. This paper carries out a survey conducted among the construction agents in order to evaluate the effectiveness of 20 best practice measures regarding C&D waste management, identifying the most suitable types of building constructions to implement these practices and also the advantages and drawbacks of their performance in a building construction project.Results of this study show that among the highly effective best practices are: the use of industrialized systems and the contract of suppliers managing the waste. In addition, distributing small containers in the work areas is also another high valued practice, although only 36% of respondents usually implement this measure in their works.  相似文献   
369.
Future limitations on the availability of selected resources stress the need for increased material efficiency. In addition, in a climate-constrained world the impact of resource use on greenhouse gas emissions should be minimized. Waste management is key to achieve sustainable resource management. Ways to use resources more efficiently include prevention of waste, reuse of products and materials, and recycling of materials, while incineration and anaerobic digestion may recover part of the embodied energy of materials. This study used iWaste, a simulation model, to investigate the extent to which savings in energy consumption and CO2 emissions can be achieved in the Netherlands through recycling of waste streams versus waste incineration, and to assess the extent to which this potential is reflected in the LAP2 (currently initiated policy). Three waste streams (i.e. household waste, bulky household waste, and construction and demolition waste) and three scenarios compare current policy to scenarios that focus on high-quality recycling (Recycling+) or incineration with increased efficiency (Incineration+). The results show that aiming for more and high-quality recycling can result in emission reductions of 2.3 MtCO2 annually in the Netherlands compared to the reference situation in 2008. The main contributors to this reduction potential are found in optimizing the recycling of plastics (PET, PE and PP), textiles, paper, and organic waste. A scenario assuming a higher energy conversion efficiency of the incinerator treating the residual waste stream, achieves an emission reduction equivalent to only one third (0.7 MtCO2/year) of the reduction achieved in the Recycling+ scenario. Furthermore, the results of the study show that currently initiated policy only partially realizes the full potential identified. A focus on highest quality use of recovered materials is essential to realize the full potential energy and CO2 emission reduction identified for the Netherlands. Detailed economic and technical analyses of high quality recycling are recommended to further evaluate viable integrated waste management policies.  相似文献   
370.
As widely recognised by EU legislation, Life Cycle Thinking (LCT) is a viable approach to support sound waste management choices. In this context, the Institute for Environment and Sustainability (IES) of the European Commission Joint Research Centre (JRC) has lead the development of macro-level, life cycle based waste management indicators to quantify and monitor the potential environmental impacts, benefits, and improvements associated with the management of a number of selected waste streams generated and treated in Europe.The waste management indicators developed make use of a combination of macro statistical waste management data combined with emissions/resource life cycle data for the different elements of the waste treatment chain. Indicators were initially calculated for the entire European Union (EU-27) and for Germany, covering several waste streams and a broad range of environmental impact categories.An indicator developed for a given waste stream captures the potential environmental impact associated with the generation and management of that waste stream. The entire waste management chain is considered, i.e. from generation to final treatment/disposal. Therefore, system boundaries for the selected waste streams include also the treatment or recycling of secondary waste (e.g. bottom ash from the incineration of household waste), and secondary products (e.g. recovered paper), as well as energy recovery.The experiences from the development of these life cycle based waste management indicators suggest that more detailed and quality-assured waste statistics are needed, especially covering the many different treatment operations and options. Also, it would be beneficial if waste statistics had a higher disaggregation level of waste categories, as well as more detailed information about waste composition. A further development of the indicators should include an increased number of waste streams, as well as calculation of the results for all Member States.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号