首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   635篇
  免费   92篇
  国内免费   290篇
安全科学   9篇
环保管理   13篇
综合类   855篇
基础理论   75篇
污染及防治   18篇
评价与监测   21篇
社会与环境   25篇
灾害及防治   1篇
  2024年   22篇
  2023年   58篇
  2022年   61篇
  2021年   80篇
  2020年   63篇
  2019年   64篇
  2018年   51篇
  2017年   38篇
  2016年   42篇
  2015年   53篇
  2014年   53篇
  2013年   53篇
  2012年   43篇
  2011年   36篇
  2010年   25篇
  2009年   32篇
  2008年   19篇
  2007年   15篇
  2006年   26篇
  2005年   13篇
  2004年   15篇
  2003年   14篇
  2002年   15篇
  2001年   12篇
  2000年   13篇
  1999年   16篇
  1998年   21篇
  1997年   10篇
  1996年   14篇
  1995年   11篇
  1994年   6篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
排序方式: 共有1017条查询结果,搜索用时 803 毫秒
241.
石化企业射线主要分布在以下几个方面 :一是放射性同位素仪表 ,用来测料位、液位和密度等 ;二是工业X、γ射线探伤机 ,用于对塔、球罐、容器及各种管道的焊缝进行检测 ,同时还定期对各种设备的腐蚀程度进行检测 ;三是医用X射线诊断设备和X射线衍射仪、荧光仪 ,分别分布于石化企业职工医院和科研机构。1射线对人体的危害X射线和γ射线都属于电磁波 ,不带电荷 ,直接作用于人体的电离作用很弱 ,它主要是与体内分子或原子产生次级电离作用 ,引起损伤效应。另外 ,X、γ射线穿透力很强 ,一定量的照射可引起皮肤和深层组织的损伤。接触射线的…  相似文献   
242.
河流拦截筑坝形成蓄水河流,逐渐向“湖泊型”生态系统演化,加强了生物地球化学循环并进一步影响水体碳循环.为了更准确地进行全球碳循环的预算并预测碳循环变化,必须确定对河流系统产生影响的碳来源.因此,通过测定库区水体c(DIC)(DIC为溶解性无机碳)及其δ13C(稳定碳同位素),分析了DIC的主要来源及其影响因素.结果表明:①水体c(DIC)为1.80~5.02 mmol/L,而δ13CDIC(溶解性无机碳的稳定碳同位素)为-7.45‰~-1.26‰.c(DIC)与EC(电导率)、TA(总碱度)均呈正相关,与水温呈负相关.表水层δ13CDIC与c(DIC)、TA均呈正相关,与EC在入库河流处呈负相关;而滞水层δ13CDIC与EC、pCO2(二氧化碳分压)、TA、c(DIC)均呈正相关.②水平方向上,表水层各指标变化明显,TA、EC、SIc(方解石饱和指数)和c(DIC)整体上呈降低趋势,δ13CDIC从上游至下游逐渐偏正,受碳酸盐矿物溶解影响显著;垂直方向上,热分层和化学分层现象对水的碳循环产生了显著影响.有机质分解在深水层释放大量CO2致使c(DIC)、pCO2逐渐升高及δ13CDIC逐渐降低,c(DIC)及其δ13C在整个水柱上存在显著的空间异质性.研究显示,光照水库DIC的来源主要有两种,即生物源的土壤CO2和有机物呼吸产生的溶解CO2形式的DIC源、碳酸盐矿物风化所产生的碳酸氢盐形式的DIC源.   相似文献   
243.
为了探究寒旱区湖泊悬浮物和沉积物中颗粒有机碳氮稳定同位素来源与环境相关性,于2019年1月对南海湖冰封期悬浮物和表层沉积物有机δ13C、δ15N及C/N值进行了测定.结果表明:南海湖冰封期悬浮有机质δ13C的变化范围为-31.94‰~-27.87‰,δ15N变化范围为15.16‰~18.66‰,C/N变化范围为3.90~5.13.沉积物δ13C值变化范围为-25.39‰~-18.83‰,δ15N值变化范围为7.04‰~13.66‰,C/N值变化范围为7.66~12.23.悬浮有机质δ13C和δ15N最高值分别出现在进水口区和湖心岛区,沉积物则都为湖心岛区表层沉积物.端元混合模型分析表明,冰封期悬浮有机质主要由内源水生藻类主导,水质保护区藻类贡献率达到82.33%,与该区域浮游植物丰度最高相符.表层沉积物有机质的主要来源为内源水生植物,在水质保护区贡献率高达89.7%.相关性分析表明,在冰封期内悬浮有机质与表层沉积物δ13C、δ15N并没有明显的相关性,在低温情况下悬浮物δ15N与温度(P<0.025)、硝态氮(P<0.019)呈显著负相关,与亚硝态氮呈显著正相关(P<0.034).原因主要与外源贡献率和生物作用的同位素效应有关.悬浮物δ13C和COD呈极显著正相关(P<0.008),与盐度呈显著正相关(P<0.046),COD和悬浮物δ13C很可能具有同源性,在湖泊冰封期具有一定的环境指示意义.  相似文献   
244.
245.
无机态氮素转化机制及水土体氮源识别方法   总被引:5,自引:2,他引:3  
梁杏  孙立群  张鑫  张洁  付鹏宇 《环境科学》2020,41(9):4333-4344
氮素在生物生命活动中起着至关重要的作用,是有机分子的基本组成元素,也是土壤的主要养分.对于氮污染的研究首先要明确各种氮形态转化机制,这是解决各种氮科学问题的基础,也是研究者容易忽略的重点.本文论述了氮素在生态系统中的转化过程及作用机制的基础,归纳总结了近年来国内外有关水土中氮源分析的研究方法及氮同位素分馏作用,重点综述了地表水及地下水体中氮源识别方法与应用,包括定性识别和模型识别方法.指出利用水化学方法与多种同位素方法相结合能够有效识别水土氮污染来源.针对传统亚硝化反应中氧原子来源识别中的问题,提出了反应过程的现代观点,解释了二次氧化反应过程中δ~(18)O-NO~-_3的富集原理.提出盆地含水层中原生铵态氮对地下水污染具有重要贡献,并给出了新的研究设想.  相似文献   
246.
株洲城郊农田土壤重金属污染特征与Pb同位素示踪   总被引:5,自引:0,他引:5  
通过采集湖南株洲城郊农田区表层土壤(A层),并分析其Cd、Hg、Pb、Zn等重金属元素含量,研究了土壤中重金属元素的污染特征.为示踪这些金属元素的来源,选择农田区典型土壤样品及湘江沉积物、污染源区土壤样品,进行重金属元素含量和Pb同位素组成测定.结果表明,农田区A层土壤受到不同程度的重金属污染,其中,Cd、Hg、Pb、Zn含量最高,分别为21.71、24.52、261.49、577.94 mg·kg-1,且Cd、Pb、Zn元素之间显著相关,而研究区附近湘江水体和沉积物中这些元素含量没有增高,说明这些重金属不是来自湘江,而是可能主要来自冶炼厂;铅同位素显示,冶炼厂附近A层土壤206Pb/207Pb值(1.150~1.164)低于周边区域A层土壤(1.164~1.169),208Pb/206Pb值(2.108~2.122)高于周边地区(2.106~2.119),说明受到人为污染的影响.从污染区分布空间位置和铅同位素源解析的结果看,农田区土壤中Cd、Hg、Pb、Zn等重金属的主要污染源是冶炼厂的冶炼烟气粉尘及与农耕活动有关的其他人为污染.  相似文献   
247.
徐璐  蒋勇军  段世辉  何瑞亮 《环境科学》2020,41(8):3637-3645
由于岩溶水文系统的脆弱性,岩溶地下水的NO~-_3污染成为全球普遍且严峻的环境问题,为保证居民的饮水安全,准确识别地下水中NO~-_3污染来源并量化各来源的贡献具有重要意义.选择重庆市近郊受城市化和农业活动影响显著的中梁山北部的龙凤和龙车两个岩溶槽谷地下河系统为研究对象,于2017年2月~2018年2月采集地下河水水样,分析其水化学和δ~(15)N-NO~-_3-δ~(18)O-NO~-_3,并利用IsoSource模型定量评估地下水中NO~-_3的来源.结果表明:①龙凤和龙车槽谷地下水NO~-_3浓度变化范围为19.31~37.01 mg·L~(-1)和2.15~27.69 mg·L~(-1),平均值分别为28.21 mg·L~(-1)和10.31 mg·L~(-1),季节变化明显;②龙凤和龙车槽谷地下水δ~(15)N-NO~-_3和δ~(18)O-NO~-_3分别变化于3.29‰~11.03‰、 0.88‰~7.51‰和5.25‰~11.40‰、 2.90‰~19.94‰,平均值分别为6.74‰、 3.18‰和7.95‰、 11.18‰,龙凤槽谷较低的δ~(15)N-NO~-_3和δ~(18)O-NO~-_3值暗示其地下水NO~-_3主要来源于农业N肥,而龙车槽谷较高的δ~(15)N-NO~-_3和δ~(18)O-NO~-_3值意味着其地下水NO~-_3主要来源于生活污水,也表明硝化过程是本区地下水N的主要转化过程;同时,两槽谷地下水δ~(15)N-NO~-_3和δ~(18)O-NO~-_3存在明显的季节差异,龙凤槽谷旱季和雨季地下水δ~(15)N-NO~-_3和δ~(18)O-NO~-_3的平均值分别为8.83‰、 2.79‰和4.64‰、 3.58‰,龙车槽谷旱季和雨季地下水δ~(15)N-NO~-_3和δ~(18)O-NO~-_3的平均值分别为9.79‰、 14.56‰和5.12‰、 7.8‰,表明两槽谷地下水NO~-_3来源存在显著的季节差异,龙凤槽谷雨季地下水NO~-_3主要来源于降水和化肥中NH~+_4的硝化作用、土壤有机氮,而旱季主要来源于人畜粪便及污水,龙车槽谷旱、雨季地下水NO~-_3都主要来源于人畜粪便及污水;③IsoSource模型解析结果表明,龙凤槽谷地下水NO~-_3污染以降水和化肥中的NH~+_4来源贡献最大(44.63%),其次为人畜粪便及污水(29.5%)和土壤氮矿化(22.38%),大气沉降和化肥贡献率较低,不足10%.其中,雨季主要来源为降水和化肥中的NH~+_4(52.25%),旱季则是人畜粪便及污水(41%);龙车槽谷NO~-_3污染以人畜粪便及污水来源最大(36.17%),其次为降水和化肥中的NH~+_4硝化(23.5%)和土壤氮矿化(22.5%),大气沉降和化肥贡献率皆低于10%,旱、雨季人畜粪便及污水来源的贡献率都较大,分别为47%和25%.  相似文献   
248.
选择密云水库上游承德市滦平盆地为研究区,通过不同土地利用类型地下水"三氮"含量、土壤全氮含量和包气带可溶硝态氮含量,结合水体硝酸盐氮氧双同位素、硫酸盐硫氧双同位素多种环境同位素特征和地下水放射性碳同位素测年示踪硝酸盐来源.结果表明,滦平盆地水体氮形态以硝态氮为主,地下水NO3-质量浓度与居民用地、旱地土地利用类型显著相关,硝酸盐污染主要集中于居民建设用地和农用地区域浅层地下水中.13.79%地下水样品NO3-质量浓度超过国标(GB/T 14848-2017)地下水硝酸盐限值Ⅲ类标准,超标范围为1.04~3.86倍;37.93%地下水样品NO3-质量浓度超WHO饮用水硝酸盐浓度限值,超标范围为1.08~6.83倍.地下水NO3-质量浓度、土壤全氮和浅层土壤可溶硝态氮空间变异受结构性因素和人为因素共同作用影响.地下水硝酸盐来源主要为家畜粪尿和生活污水混合污染,其次为化学肥料淋滤;盆地山前地下水径流区包气带-地下水氮循环主导过程为硝化作用.以盆地系统作为独立单元研究水环境硝酸盐污染来源和归趋规律,对流域整体地下水污染防治和修复具有重要意义.  相似文献   
249.
梯级水电建设对澜沧江流域生源物质迁移转化及其生态环境的影响目前受到国内外学者的广泛关注,本文通过使用稳定同位素技术,分析了澜沧江流域悬浮颗粒物氮同位素的空间分布差异及其成因.结果表明,澜沧江上游自然河道水体溶解无机氮(DIN)质量浓度变化范围为0. 28~0. 60 mg·L~(-1),下游水库段DIN质量浓度显著增高,变化范围为0. 39~1. 15mg·L~(-1);上游自然河道段悬浮颗粒物δ~(15)N变化范围为4. 52‰~6. 72‰,下游水库段明显增重其变化范围为2. 3‰~11. 8‰.利用Isosource软件对悬浮颗粒物来源进行分析,结果表明澜沧江流域内工业及生活污水为悬浮物颗粒物氮素的主要贡献源,占比约为42. 43%;土壤有机质、大气沉降、农业化肥的贡献率分别为22. 38%、18. 16%和17. 03%;在该流域内上游自然河道段受工业及生活污水、土壤有机质以及大气沉降共同影响,下游水库段则主要受工业及生活污水的影响.同时小湾、漫湾、大朝山这3个库区内存在藻类吸收同化作用而使得悬浮颗粒物δ~(15)N变轻的现象.  相似文献   
250.
基于氮稳定同位素分馏原理,运用瑞利分馏方程,论文构建了活性污泥脱氮性能评价模型,以分析城市污水的微生物脱氮效率与活性.实验通过对城市污水处理厂的长期监测,确定了模型的主要参数.为验证模型在不同出水无机氮组成情况下的适用性,本研究监测了反硝化限制作用、硝化限制作用、氨化限制作用3种情况下的脱氮效能.结果表明,这3种情况下的脱氮效能均可以通过测定活性污泥的δ15N值,利用该评价模型预测.为验证该模型在不同脱氮能力下的适应性,本研究设置了3种典型工况,测得的3种工况下活性污泥的δ15N值分别为13.97‰、8.33‰和4.47‰,利用评价模型得出的脱氮效率分别为96%、71%和22%,与实际脱氮效率吻合度高,污泥脱氮活性也呈现递减趋势.说明该模型对于具有不同脱氮能力的水处理系统均适用.该模型可避免复杂的布点监测等过程,仅通过污泥的δ15N值即可了解整个系统的脱氮能力及污泥脱氮活性,对污水处理厂的强化脱氮具有指导意义;为评价污水处理过程中氮的去除效果提供了更为便捷、准确的途径.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号