首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   4篇
  国内免费   33篇
安全科学   9篇
环保管理   16篇
综合类   52篇
基础理论   41篇
污染及防治   11篇
评价与监测   6篇
社会与环境   5篇
  2024年   1篇
  2023年   7篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   5篇
  2016年   6篇
  2015年   10篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   18篇
  2010年   12篇
  2009年   9篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   6篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
41.
The Environmental Implications of Soil Erosion in the United States   总被引:3,自引:0,他引:3  
Soil erosion has both on-farm and off-farm impacts. Reductionof soil depth can impair the lands productivity, and thetransport of sediments can degrade streams, lakes, and estuaries. Since 1933, soil conservation policies have existedin the United States. Originally they focused on the on-farmbenefits of keeping soil on the land and increasing net farmincome. Beginning in the 1980s, however, policy goalsincreasingly included reductions in off-site impacts of erosion.As a consequence of conservation efforts associated withexplicit U.S. government policies, total soil erosion between1982 and 1992 was reduced by 32% and the sheet and rillerosion rate fell from an average of 4.1 tons per acre per yearin 1982 to 3.1 tons per acre in 1992 while the wind erosion ratefell from an average of 3.3 tons per acre per year to 2.4 tonsper acre per year over the same period. Still, soil erosion isimposing substantial social costs. These costs are estimated tobe about $37.6 billion annually. To further reduce soil erosionand thereby mitigate its social costs, there are a number ofpolicy options available to induce farmers to adopt conservationpractices including education and technical assistance, financial assistance, research and development, land retirement, andregulation and taxes.  相似文献   
42.
湖南双季稻区耕作模式的环境影响评价   总被引:2,自引:0,他引:2  
以湖南双季稻区双季稻-马铃薯(CT1)、双季稻-黑麦草(CT2)、双季稻-紫云英(CT3)、双季稻-油菜(CT4)、双季稻双免栽培(CT5)5种保护性耕作模式为例,应用生命周期评价方法,从单位面积投入、单位面积产量、单位经济效益的环境影响三个角度评价不同保护性耕作模式的环境潜在影响.结果表明:从单位面积物质投入的角度评价结果显示,CT3模式的潜在环境影响综合指数较对照模式(双季稻-冬闲,CK)低4.72%,而其他模式则比CK高出11.95%-45.20%,平均增加了29.02%;从单位面积产量的角度评价结果显示,CT5模式的潜在环境影响综合指数比CK高34.55%,两其他模式则比CK低1.57-45.93%,平均降低24.29%;从单位经济效益的角度评价结果显示,CT5模式的潜在环境影响综合指数比CK高23.93%,而其他模式则比CK低29.07-49.06%,平均增加了24.88%.综合考虑,与CK对比,CT3和CT4模式对环境的潜在影响较小,CT2居中,CT5和CT1模式则较大.  相似文献   
43.
Zhang J  Geng J  Ren H  Luo J  Zhang A  Wang X 《Chemosphere》2011,85(8):1325-1330
Phosphorus (P) is a key biological element and limiting nutrient in aquatic environments. Phosphate (+5) is traditionally associated with the P nutrient supply. However, phosphite (+3) has recently generated a great deal of interest, because of the possibility that it is a P source based on recognition of its vital role in the original life of the early earth. This study investigated whether phosphite can be an alternative P source for Microcystis aeruginosa PCC 7806, one of the predominant bloom species in freshwater systems. The results indicated that M. aeruginosa could not utilize phosphite as a sole P-nutrient directly for cell growth at any concentration, but that phosphite could boost cell numbers and chlorophyll a (Chl-a) content as long as phosphate was provided simultaneously. Specifically, Chl-a production increased sharply when 5.44 mg P L−1 phosphite was added to 0.54 mg P L−1 phosphate medium. Analysis of the maximum yield of PSII indicated that phosphite may stimulate the photosynthesis process of cells in phosphate-phosphite medium. In addition, phosphite failed to support cell growth, even though it more readily permeated the cells in P-deficient medium than in P-sufficient medium. Alkaline phosphatase activity (APA) analysis indicated that, unlike organic P, phosphite inhibits the response of cells to deficient P status, especially under P-deprived conditions.  相似文献   
44.
Vamerali T  Bandiera M  Mosca G 《Chemosphere》2011,83(9):1241-1248
Sunflower, alfalfa, fodder radish and Italian ryegrass were cultivated in severely As-Cd-Co-Cu-Pb-Zn-contaminated pyrite waste discharged in the past and capped with 0.15 m of unpolluted soil at Torviscosa (Italy). Plant growth and trace element uptake were compared under ploughing and subsoiling tillages (0.3 m depth), the former yielding higher contamination (∼30%) in top soil.Tillage choice was not critical for phytoextraction, but subsoiling enhanced above-ground productivity, whereas ploughing increased trace element concentrations in plants. Fodder radish and sunflower had the greatest aerial biomass, and fodder radish the best trace element uptake, perhaps due to its lower root sensitivity to pollution. Above-ground removals were generally poor (maximum of 33 mg m−2 of various trace elements), with Zn (62%) and Cu (18%) as main harvested contaminants. The most significant finding was of fine roots proliferation in shallow layers that represented a huge sink for trace element phytostabilisation.It is concluded that phytoextraction is generally far from being an efficient management option in pyrite waste. Sustainable remediation requires significant improvements of the vegetation cover to stabilise the site mechanically and chemically, and provide precise quantification of root turnover.  相似文献   
45.
The study was conducted to assess the potential of Norwegian agricultural ecosystems to sequester carbon (C) based on the data from some long-term agronomic and land use experiments. The total emission of CO2 in Norway in 1998 was 41.4 million metric ton (MMT), of which agriculture contributed only 0.157 MMT, or <0.4% of the total emissions. With regards to methane (CH4) and nitrous oxide (N2O) gases, however, agricultural activities contributed 32.5% and 51.3% of their respective emissions in Norway. The soil organic carbon (SOC) losses associated with accelerated soil erosion in Norway are estimated at 0.475 MMTC yr–1. Land use changes and soil/crop management practices with potential for SOC sequestration include conservation tillage methods, judicious use of fertilizers and manures, use of crop residues, diverse crop rotations, and erosion control measures. The potential for SOC sequestration is 0.146 MMTC yr–1 for adopting conservation tillage, 0.011–0.035 MMTC yr–1 for crop residue management, 0.026 MMTC yr–1 for judicious use of mineral fertilizer, 0.016–0.135 MMTC yr–1 for manure application, and 0.036 MMTC yr–1 for adopting crop rotations. The overall potential of these practices for SOC sequestration ranges from 0.591 to 1.022 MMTC yr–1 with an average value of 0.806 MMTC yr–1. Of the total potential, 59% is due to adoption of erosion control measures, 5.8% to restoration of peat lands, 21% to conversion to conservation tillage and residue management, and 14% to adoption of improved cropping systems. Enhancing SOC sequestration and improving soil quality, through adoption of judicious land use and improved system of soil and crop management, are prudent strategies for sustainable management of soil, water and environment resources.Readers should send their comments on this paper to: bhaskarn ath@aol.com within 3 months of publication of this issue.  相似文献   
46.
为探究旱作麦田长期耕作对不同土层细菌群落结构的影响及其与土壤理化性质的关系,于2016~2021年在山西农业大学闻喜旱地小麦试验示范基地开展长期定位试验,研究夏闲期免耕(NT)、深松(ST)和深翻(DP)这3种耕作方式对不同土层土壤理化性质,细菌群落αβ多样性,细菌门和属优势物种及差异物种的影响,并采用PICRUSt2预测其代谢功能.结果表明,旱作麦田连续5a深松和深翻较免耕显著提高了20~40 cm土层土壤含水量,显著降低了0~20 cm土层土壤有机碳含量;深松较深翻显著提高了0~20 cm土层土壤含水量、土壤有机碳、可溶性有机碳和可溶性有机氮含量.深松和深翻较免耕可提高0~40 cm土层土壤细菌群落的α多样性,且深松高于深翻.深松和深翻较免耕显著提高了0~20 cm土层中酸杆菌门、硝化螺旋菌门和20~40 cm土层中酸杆菌门、绿弯菌门、芽单胞菌门、Rokubacteria门、GAL15门和硝化螺旋菌门的相对丰度;显著提高了0~20 cm土层硝化螺旋菌属和20~40 cm土层Rubrobacter属和链霉菌属的相对丰度.深松较深翻显著提高了0~40 cm土层酸杆菌门、芽单胞菌门的相对丰度.冗余分析表明,0~20 cm土层的土壤有机碳、可溶性有机碳和可溶性有机氮含量对放线菌门和牙殖球菌属产生正向效应,且深松下0~40 cm土层的土壤含水量对酸杆菌门、绿弯菌门和芽单胞菌门产生正向效应.PICRUSt2预测结果表明,深松和深翻较免耕显著提高了20~40 cm土层细菌群落的氨基酸代谢和辅酶维生素代谢的相对丰度,但降低了脂质代谢的相对丰度;深松较深翻显著提高了0~40 cm土层细菌群落的氨基酸代谢和0~20 cm土层其他氨基酸代谢的相对丰度.总之,旱地麦田夏闲期深松或深翻均可提高土壤含水量、土壤细菌群落的α多样性及细菌群落的代谢能力,深松还可提高酸杆菌门和芽单胞菌门的相对丰度,并提高细菌群落的氨基酸代谢能力,从而提高了土壤可溶性有机碳、氮含量.  相似文献   
47.
The relative contribution of reduced nitrogen to acid and eutrophic deposition in Europe has increased recently as a result of European policies which have been successful in reducing SO(2) and NO(x) emissions but have had smaller impacts on ammonia (NH(3)) emissions. In this paper the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME) model was used to calculate the spatial patterns of annual average ammonia and ammonium (NH(4)(+)) air concentrations and reduced nitrogen (NH(x)) dry and wet deposition with a 5 km × 5 km grid for years 2002-2005. The modelled air concentrations of NH(3) and dry deposition of NH(x) show similar spatial patterns for all years considered. The largest year to year changes were found for wet deposition, which vary considerably with precipitation amount. The FRAME modelled air concentrations and wet deposition are in reasonable agreement with available measurements (Pearson's correlation coefficients above 0.6 for years 2002-2005), and with spatial patterns of concentrations and deposition of NH(x) reported with the EMEP results, but show larger spatial gradients. The error statistics show that the FRAME model results are in better agreement with measurements if compared with EMEP estimates. The differences in deposition budgets calculated with FRAME and EMEP do not exceed 17% for wet and 6% for dry deposition, with FRAME estimates higher than for EMEP wet deposition for modelled period and lower or equal for dry deposition. The FRAME estimates of wet deposition budget are lower than the measurement-based values reported by the Chief Inspectorate of Environmental Protection of Poland, with the differences by approximately 3%. Up to 93% of dry and 53% of wet deposition of NH(x) in Poland originates from national sources. Over the western part of Poland and mountainous areas in the south, transboundary transport can contribute over 80% of total (dry + wet) NH(x) deposition. The spatial pattern of the relative contribution of national sources to total deposition of NH(x) may change significantly due to the general circulation of air.  相似文献   
48.
A physical and mathematical model of the reduced kinetics is presented describing heterogeneous detonation in suspensions non-uniform in particle concentration. The model is based on the heterogeneous media approaches, semi-empirical laws of ignition and combustion, and data on the dependence of the detonation velocity on particle concentration. Formation of suboxides and incomplete combustion of aluminum are taken into account integrally. The dependence of the heat release of chemical reactions and the fraction of unburnt particles on the initial composition is determined from the solution of the stationary problem of the structure of the detonation wave. In the calculations of unsteady detonation flows, it is supposed to solve an additional equation for the spatial distribution of initial concentrations. The problems of initiation and development of cellular detonation in flat channels in suspensions of micron-sized aluminum particles are studied. Dependences of the cell size on particle concentration in uniform suspensions are determined. The flow patterns of cellular structures, the forms of the leading front, and the propagation velocities in channels with longitudinal or transversal gradients of particle concentration are analyzed.  相似文献   
49.
Results from the UK were reviewed to quantify the impact on climate change mitigation of soil organic carbon (SOC) stocks as a result of (1) a change from conventional to less intensive tillage and (2) addition of organic materials including farm manures, digested biosolids, cereal straw, green manure and paper crumble. The average annual increase in SOC deriving from reduced tillage was 310 kg C ± 180 kg C ha−1 yr−1. Even this accumulation of C is unlikely to be achieved in the UK and northwest Europe because farmers practice rotational tillage. N2O emissions may increase under reduced tillage, counteracting increases in SOC. Addition of biosolids increased SOC (in kg C ha−1 yr−1 t−1 dry solids added) by on average 60 ± 20 (farm manures), 180 ± 24 (digested biosolids), 50 ± 15 (cereal straw), 60 ± 10 (green compost) and an estimated 60 (paper crumble). SOC accumulation declines in long-term experiments (>50 yr) with farm manure applications as a new equilibrium is approached. Biosolids are typically already applied to soil, so increases in SOC cannot be regarded as mitigation. Large increases in SOC were deduced for paper crumble (>6 t C ha−1 yr−1) but outweighed by N2O emissions deriving from additional fertiliser. Compost offers genuine potential for mitigation because application replaces disposal to landfill; it also decreases N2O emission.  相似文献   
50.
研究中国保护性耕作净碳汇的时空格局对其推广政策的合理制定具有重要意义。在分析保护性耕作固碳排碳机理和构建其测度方法的基础上,以中国各省(市、自治区)为单元,对2000—2019年中国保护性耕作净碳汇的时空格局进行分析,并对其潜力进行预测。结果表明:(1)每年保护性耕作的碳汇基本都是碳排的2倍,土壤固碳占保护性耕作碳汇的2/3以上,生物固碳占比小于1/3。(2)中国保护性耕作净碳汇在时间上呈现逐年递增趋势,其中,华北、西北和东南地区增幅较大;在空间上表现为扩张—集聚—扩张态势,其重心由北向南移动。(3)中国保护性耕作净碳汇具有明显的空间非均衡性特征,2019年呈现华北、西北和东南地区“三足鼎立”之格局,河南、山东、内蒙古、新疆、安徽、湖北和江西7省区属于高碳汇区,河北、吉林、陕西和山西属于低碳汇区,其他省份属于碳中和区。(4)2020—2030年中国保护性耕作的净碳汇潜力继续保持增长态势,2030年的峰值将处于5794.38万~7962.93万t C之间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号