首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   3篇
  国内免费   24篇
安全科学   9篇
废物处理   2篇
环保管理   5篇
综合类   33篇
基础理论   28篇
污染及防治   32篇
评价与监测   1篇
社会与环境   3篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   2篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   7篇
  2011年   12篇
  2010年   12篇
  2009年   10篇
  2008年   8篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   2篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有113条查询结果,搜索用时 156 毫秒
81.
A greenhouse experiment was carried out to compare differences in potential activities of ammonification, nitrification and denitrification in rhizosphere and bulk soil in a heavy-metal-stressed system. Exchangeable fractions of Cd, Cu and Cr were all higher in the rhizosphere of maize than in bulk soil. Results showed that the mineralization of N in soil was stimulated by low concentration of Cd.Addition of Cd at low levels stimulated the ammonifying and nitrifying activity in soil, while inhibitory influences were shown at high levels.Nitrifying bacteria was proved to be the most sensitive one, whilst the effect on denitrifying bacteria was very limited. Comparing Cd, Cu and Cr(Ⅵ) at 20 mg/kg soil, Cd was the most effective inhibitor of ammonification and denitrification, while Cr(Ⅵ) had the strongest influence on nitrifying activity. Root exudates played important roles on the different exchangeable metal fractions and bacterial activities between rhizosphere and non-rhizosphere. Nitrate was the main form of mineral N in soil, as well as the main form of N absorbed by plants, but the formation and relative absorption of ammonium were promoted in response to high Cd exposure.  相似文献   
82.
Removal experiments of phenol,aniline,2,4-dichlorophenol,nonylphenol and bisphenol A(BPA) using Spirodela polyrrhizabacterial associations revealed that all compounds but BPA underwent accelerated removal.The mechanisms differed depending on the substrates.It was found that S.polyrrhiza has a great ability to release phenolic compound-rich root exudates,and the exudates seem to stimulate bacterial degradation of a variety of aromatic compounds.  相似文献   
83.
通过盆栽试验,研究了不同Cd质量分数(0、50、100、200 mg.kg-1)对续断菊Sonchus asper L.Hill.根系分泌总有机酸、游离氨基酸、可溶性糖的影响,旨在探明根系分泌物对续断菊超积累Cd的影响。结果表明:Cd胁迫下续断菊根系分泌总有机酸、游离氨基酸和可溶性糖的质量浓度显著增加,同时,总有机酸、可溶性糖和游离氨基酸又促进了植株对Cd的吸收。随着Cd处理质量分数的增加,续断菊地上部和根部镉质量分数显著增加,90 d时续断菊地上部镉质量分数与可溶性糖、游离氨基酸的质量浓度呈极显著正相关,相关系数分别为0.999(P〈0.01)和0.995(P〈0.01),根部镉质量分数与可溶性糖、游离氨基酸的质量浓度也呈显著正相关,相关系数分别为0.998(P〈0.01)和0.987(P〈0.05);Cd对续断菊根系可溶性糖的分泌、游离氨基酸的合成有刺激作用,根系分泌的可溶性糖和游离氨基酸可能在续断菊累积镉的过程中有重要作用。  相似文献   
84.
85.
The combined impacts of simulated increased nitrogen (N) deposition (75 kg N ha−1 yr−1) and increasing background ozone (O3) were studied using two mesotrophic grassland species (Dactylis glomerata and Ranunculus acris) in solardomes, by means of eight O3 treatments ranging from 15.5 ppb to 92.7 ppb (24 h average mean). A-Ci curves were constructed for each species to gauge effects on photosynthetic efficiency and capacity, and effects on biomass partitioning were determined after 14 weeks. Increasing the background concentration of O3 reduced the healthy above ground and root biomass of both species, and increased senesced biomass. N fertilisation increased biomass production in D. glomerata, and a significantly greater than additive effect of O3 and N on root biomass was evident. In contrast, R. acris biomass was not affected by high N. The study shows the combined effects of these pollutants have differential implications for carbon allocation patterns in common grassland species.  相似文献   
86.
Exogenous application of plant-growth promoting substances may potentially improve phytoremediation of metal-polluted substrates by increasing shoot and root growth. In a pot-based study, fodder radish (Raphanus sativus L. var. oleiformis Pers.) was grown in As-Zn-Cu-Co-Pb-contaminated pyrite waste, and treated with indolebutyric acid (IBA) either by foliar spraying (10 mg L−1), or by direct application of IBA to the substrate (0.1 and 1 mg kg−1) in association, or not, with foliar spraying. With the exception of foliar spraying, IBA reduced above-ground biomass, whilst direct application of IBA to the substrate surface reduced root biomass (−59%). Trace element concentrations were generally increased, but removals (mg per plant) greatly reduced with IBA application, together with greater metal leaching from the substrate. It is concluded that, in our case, IBA had a negative effect on plant growth and phytoextraction of trace elements, possibly due to unsuitable root indoleacetic acid concentration following soil IBA application, the direct chelating effect of IBA and the low microbial activity in the pyrite waste affecting its breakdown.  相似文献   
87.
In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system.  相似文献   
88.
In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as ‘fast-grower’ or ‘slow-grower’ species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing ‘fast-grower’ and ‘slow-grower’ strategies and outlining applications for remediation practices.  相似文献   
89.
Rare earth pollution and acid rain pollution are both important environmental issues worldwide. In regions which simultaneously occur, the combined pollution of rare earth and acid rain becomes a new environmental issue, and the relevant research is rarely reported. Accordingly, we investigated the combined effects and mechanisms of lanthanum ion (La3+) and acid rain on the root phenotype of soybean seedlings. The combined pollution of low-concentration La3+ and acid rain exerted deleterious effects on the phenotype and growth of roots, which were aggravated by the combined pollution of high-concentration La3+ and acid rain. The deleterious effects of the combined pollution were stronger than those of single La3+ or acid rain pollution. These stronger deleterious effects on the root phenotype and growth of roots were due to the increased disturbance of absorption and utilization of mineral nutrients in roots.  相似文献   
90.
In Europe more than 2,500 lysimeters operated by research institutes and industry (Lanthaler 2005). Originally lysimeters were built for investigations of soil water and solutes, nutrient leaching and pesticide degradation (see e.g. Winton and Weber 1996). Currently lysimeters additionally used as a tool for investigations on biological processes, and structural changes of plants, including root distribution, and enzyme activities etc. (see e.g. Dizer et al. 2002; Schloter et al. 2005).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号