首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  国内免费   22篇
环保管理   1篇
综合类   25篇
基础理论   14篇
污染及防治   11篇
社会与环境   1篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2009年   1篇
  2008年   6篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1998年   4篇
  1996年   2篇
  1995年   1篇
排序方式: 共有52条查询结果,搜索用时 343 毫秒
21.
Furfural is an important inhibitor in ethanol fermentation process using lignocellulosic hydrolysates as raw materials. In order to find out the furfural concentration range in which furfural inhibits the fermentation process, we used one strain Saccharomyces kluyveri selected from soil and cultured in several different furfural content media under low glucose concentration condition. Experiment results showed that microorganism growth was stimulated and dry cell weight increased when furfural concentration in the medium was 0.25 mg/ml. Furfural had negative effect on cell growth when its concentration was above 1.00 mg/ml. At the same time, the strain growed better and had a higher glucose consumption rate in 5% original glucose concentration condition than in 3% original glucose concentration condition. The results showed that appropriate exaltation of original glucose concentration in stalk hydrolysates will increase the strain resistance to furfural.  相似文献   
22.
The kinetic parameters and the purification rates of the hybrid cell Foaz in soybean processing wastewater (SPW) were measured through a shaking reaction and in two automatic regulated control stable fermentation systems (ARCSFS). The maximum specific growth rate of Foaz was 0.576 h‐1, higher than that of one of its parental strains Rhodobacter sphaeroides P9479 and lower than that of another parental strain Saccharomyces cerevisiae Y9407. The BOD5 removal rate of Foaz in the No. 1 system was 61.3%, higher than those of both its parental strains when the influent BOD5 concentration was 4600 mg/L. The results of this study suggest that the hybrid Foaz has a better capacity of the degradation of organic pollutants in SPW than its parental strains and it may be applicable to the treatment of high concentration organic wastewater.  相似文献   
23.
口服转鲑鱼降钙素基因酵母为鲑鱼降钙素的应用开辟了一条新的途径.为评价转鲑鱼降钙素基因酵母的安全性,将转基因酵母分别灌胃昆明种小鼠和Wistar大鼠进行急性毒性实验(7 d)、亚急性毒性实验(8周).急性毒性实验结果表明灌喂转基因酵母对小鼠无致死效应(LD50>10 000 mg/kg);亚急性毒性实验中高(2.0 g/kg)、低(0.5 g/kg)剂量组动物的一般状况、体重、主要脏器系数、血液学指标及血液生化指标与各对照组比较,均未见明显差异(P>0.05),组织病理切片检查未发现病理性变化.实验结果说明转鲑鱼降钙素基因酵母不会对实验动物造成不良影响,是安全无毒的.图3表3参16  相似文献   
24.
Summary Changes of the surface properties were studied in the cell wall of the yeast Saccharomyces cerevisiae Y-517 under influence of the electromagnetic field (EMF) (40.68 MHz) and lethal doses of the fungicidal antibiotic nystatin (10 μg/106 cells). Atomic force microscopy was used to study surface topography and visco-elastic properties of the cell walls. Surface carbohydrates were detected by lectins marked with gold with the help of the scanning electron microscope. Additional polysaccharide layer appeared over cell surface after EMF exposure. We suggest that electromagnetic fields resulted in the change of the cell surface, and, accordingly, the sensitivity of organisms to the antifungal antibiotics.  相似文献   
25.
陈灿  谢亚宁  杜永华  王建龙 《环境科学》2008,29(6):1666-1670
为深入探讨酿酒酵母与重金属离子Zn(Ⅱ)的相互作用机制,利用扩展X射线吸收精细结构谱(EXAFS)研究了在不同实验条件下,酿酒酵母吸附重金属离子Zn(Ⅱ)的局域结构.结果表明, Zn以四配位体和六配位体混合构型与酵母细胞表面结合,且以四配位体构型为主. Zn的第一配位层Zn--O原子间距和配位数分别在0.197~0.203 nm和3.2~4.3范围内. Zn(Ⅱ)初始浓度升高、初始pH值升高导致Zn--O配位数下降,活酵母细胞Zn--O配位数低于死酵母细胞, Zn--O原子间距下降.  相似文献   
26.
Previous studies have demonstrated that cadmium can induce biochemical and physiological changes in yeast Saccharomyces cerevisiae. However, studies on the influence of cadmium on the ion balance in the cell and the interaction between cadmium and other ions are still relatively few in number. By using inductively coupled plasma-atomic emission spectrometry, the contents of some cations, including Zn2+, Ca2+, Fe3+, Cu2+, Mg2+, K+, and Na+ were measured. The data showed that the levels of Zn2+ and Fe3+ were increased, while those of Cu2+, K+, and Na+ were decreased after cadmium treatment. Afterwards, using the drop test assay, the interactions between cadmium and the selected ions were investigated. The results suggested that the cytotoxicity of cadmium could be attributable to the interference of cadmium with the intracellular cation homoeostasis. Calcium channel transporter Cch1 participates in the intracellular uptake of cadmium. Additionally, Zn2+, Ca2+, Fe3+, Mg2+, and K+ can rescue the toxic effect of cadmium in yeast.  相似文献   
27.
非固定化和固定化啤酒酵母对Cd2+和Cu2+的吸附特性研究   总被引:2,自引:1,他引:1  
对比了不同吸附剂对重金属的吸附效果,同时研究了啤酒酵母的固定化方法、菌体用量对吸附效果的影响、非固定化和固定化啤酒酵母吸附热力学特性。研究结果表明,非固定化死啤酒酵母对Cd2+的单位菌体吸附量是常用吸附剂活性炭的3倍;由1∶3的海藻酸钠与碱处理啤酒酵母(w/w)制得的固定化颗粒吸附效果最好;菌体用量的增加会降低单位菌体对重金属的吸附量;啤酒酵母对重金属的吸附位点有限,Cd2+的实际最大吸附量为13.95 mg/g,Cu2+为7.67 mg/  相似文献   
28.
Alternative fuels have several advantages compared to fossil fuels as they are renewable, biodegradable, provide energy security, foreign exchange saving as well as help in addressing environmental concerns and socio-economic issues. Therefore, renewable fuels can be used predominantly as a fuel for transportation and for applications in power generation. Shaft power application is a key factor for economic growth and prosperity and depends crucially on the long-term availability of energy from sources that are affordable, accessible and environmentally friendly. In this context, the main objective of the present study was to implement the production of bioethanol from Calliandra calothyrsus, a potential lignocellulosic raw material for the cellulose-to-bioethanol conversion process that can be used as an alternative resource to starch- or sugar-containing feedstock. This study addresses a new pretreatment method known as hydrothermal explosion using C. calothyrsus for ethanol production. The present study also involves experimental investigations on a single-cylinder, four-stroke, direct-injection diesel engine operated with Honge oil methyl ester (biodiesel) and ethanol and its comparison with a neat diesel fuel mode of operation. The results revealed that optimal parameters for bioethanol production from C. calothyrsus were 2% acid concentration (HCl), 100°C temperature and 80 min retention time. For a diesel engine operated with a HOME–bioethanol blend, the experimental results showed a 3–4% decrease in brake thermal efficiency with a 8–10% increase in hydrocarbon and carbon monoxide emission levels and a 15–18% decrease in nitric oxide emission levels when compared with a neat diesel fuel mode of operation.  相似文献   
29.
Furfural is an important inhibitor in ethanol fermentation process using lignocellulosic hydrolysates as raw materials.In order to find out the fuffural concentration range in which furfural inhibits the fermentation process,we used one strain Saccharomyces kluyveri selected from soil and cultured in several different furfural content media under low glucose concentration condition.Experiment results showed that microorganism growth was stimulated and dry cell weight decreased when furfural concentration in the medium was 0.25 mg/ml.Furfural had negative effect on cell growth when its concentration was above 1.00 mg/ml.At the same time,the strain growed better and had a higher glucose consumption rate in 5% original glucose concentration condition than in 3% original glucose concentration condition.The results showed that appropriate exaltation of original glucose concentration in stalk hydrolysates will increase the strain resistance to furfural.  相似文献   
30.
对比了不同吸附剂对重金属的吸附效果,同时研究了啤酒酵母的固定化方法、菌体用量对吸附效果的影响、非同定化和固定化啤酒酵母吸附热力学特性。研究结果表明,非固定化死啤酒酵母对Cd^2+的单位菌体吸附量是常用吸附剂活性炭的3倍;由1:3的海藻酸钠与碱处理啤酒酵母(w/w)制得的固定化颗粒吸附效果最好;菌体用量的增加会降低单位菌体对重金属的吸附量;啤酒酵母对重金属的吸附位点有限,Cd^2+的实际最大吸附量为13.95mg/g,Cu^2+为7.67μg/g。非固定化和固定化啤酒酵母对Cu^2+和Cd^2+的等温吸附过程均可用Linear方程、Langmuir方程和Freundlich方程来进行拟合,但非同定化啤酒酵母以Langmuir方程最优,其拟合计算的最大吸附量qmzxCd和qmxxCu分别为13.96mg/g和8.01mg/g;固定化啤酒酵母以Freundlich方程最优,实际最大吸附量Cd为75.41mg/g,Cu为66.58mg/g。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号