首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   3篇
  国内免费   34篇
安全科学   2篇
废物处理   3篇
环保管理   19篇
综合类   50篇
基础理论   33篇
污染及防治   34篇
评价与监测   10篇
社会与环境   7篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   7篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   2篇
  2015年   6篇
  2014年   1篇
  2013年   5篇
  2012年   4篇
  2011年   15篇
  2010年   8篇
  2009年   11篇
  2008年   13篇
  2007年   13篇
  2006年   6篇
  2005年   8篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有158条查询结果,搜索用时 224 毫秒
141.
Lake Sapanca is exposed to heavy urbanization and industrialization because of its natural beauty and its proximity to the metropolitan İstanbul, Turkey. In this study, it was aimed to investigate seasonal changes of some heavy metals (Pb, Cr, Cu, Mn, Ni, Zn and Cd) concentration of surface sediment. Nine different stations were chosen as sampling points. Samples were taken every three months and the seasonal and annual average concentration of the elements were determined. Seasonal highest values of heavy metals were observed as follows; Cr, Cu, Mn, Ni and Zn in Summer, Cd in Autumn. There was no seasonal difference for Pb, Cr and Cd. It seems that Lake Sapanca has not been polluted yet. However, it was found that Cu and Ni concentrations in surface sediment exceed lowest effect level.  相似文献   
142.
鞍山市空气颗粒物中酞酸酯的季节变化与功能区差异   总被引:2,自引:0,他引:2  
采用气相色谱-质谱仪(GC-MS)对辽宁省鞍山市空气颗粒物中15种酞酸酯夏季和冬季的浓度进行了分析测定,研究了酞酸酯污染水平的季节变化,不同功能区酞酸酯浓度的差异,以及DBP和DEHP在夏冬两季中的污染特点,将鞍山市夏冬两季酞酸酯的浓度与国内外部分城市进行了比较,分析了产生上述结果的原因,基本说明了鞍山市空气颗粒物中酞酸酯的污染状况。  相似文献   
143.
青岛近岸海域二甲基硫排放和大气中二甲基硫浓度变化   总被引:7,自引:1,他引:6  
为研究我国受人为干扰严重的近岸海域DMS排放规律,利用固体吸附-解吸的富集采样方法和冷却预浓缩的分析方法,分别在2001年夏秋季和2002年春秋季,对青岛近岸海域海水和大气中的二甲基硫进行了采样和分析.结果表明,海水中DMS浓度和海气排放通量呈现明显的空间分布和季节变化.夏季,青岛近岸的海水DMS平均浓度最高,达1169.47 ng·L-1;春季最低,只有226.99 ng·L-1.河口区、风景旅游区和奥运赛场区在夏季有显著的从高到低的浓度梯度变化,而春秋季不明显.DMS海气排放通量主要由海水浓度决定,因此两者呈现一致的变化规律.海洋大气中的DMS也呈现夏季较高(256.44 ng·m-3),秋季较低(195.64 ng·m-3)的季节变化.文中还初步探讨了大气DMS的日变化情况.  相似文献   
144.
We present the first estimates of speciated monoterpene emissions from the North European coniferous forests. Measured emission factors and emission profiles of boreal tree species (Picea abies, Pinus sylvestris, Betula pendula, Salix phylicifolia, Populus tremula, and Alnus incana) were used together with detailed satellite land cover information and meteorological data in an emission model based on the Guenther emission algorithms. The variation of the coniferous biomass within the boreal region (60°N to 70°N) was obtained from forest inventory data, and the seasonal variability of the deciduous biomass was taken into account through simple boreal climatology parameterisation. The annual biogenic emissions in the boreal zone are dominated by coniferous species, but in the summer months, the deciduous contribution to the monoterpene and isoprene emissions is considerable. Norway spruce (Picea abies) is the most important isoprene emitter in the north European boreal forests. The biogenic emission fluxes in the South boreal zone are approximately twice as high as fluxes in the North boreal zone. α- and β-pinene, carene, and cineole are the most abundant emitted terpenes, with a strong contribution of isoprene and linalool during the summer months.  相似文献   
145.
A 30 x 0.9 cm piece of steel rod bent in the shape of an “L” and attached by hose clamps to a 15 x 3.2 cm section of plastic pipe sliding on an 86 x 1.9 cm steel shaft was tested for use in measuring scour and fill of salmon spawning riffles. Installed along channel cross-sections, results of tests at four sites on two hydraulically different streams showed the device to be useful in monitoring event specific scour and fill. Measurement error was estimated to be ± 10 mm.  相似文献   
146.
为识别影响渤海鳀鱼产卵场分布的关键因素并预测产卵场的未来变迁,采用地理加权回归(GWR)方法,建立了渤海鳀鱼产卵场分布的GWR回归模型,分析了鳀鱼鱼卵分布与环境因子的关系,进而结合海表温度、盐度变化趋势,预测了未来渤海鳀鱼产卵场空间分布的变迁.结果表明,表层海水的温度、硅酸盐浓度、盐度和海水深度是对鳀鱼产卵场分布贡献较大的因素,其回归系数平均值依次为1.296、-1.133、-0.374和0.521,在未来海表温度、盐度变化情景下,一方面,渤海鳀鱼产卵场总面积将呈现缩小的趋势,最大可收缩为现有面积的47%,特别是渤海湾东北部鳀鱼产卵场明显收缩;另一方面,鳀鱼产卵场的密集区会发生迁移,如在辽东湾将出现新的产卵场密集区.GWR方法可以识别变量的空间非平稳性,应用其预测鳀鱼产卵场的未来变迁,可为渤海生态综合管理提供科学依据.  相似文献   
147.
Water quality monitoring involves sampling a population, water quality, that is changing over time. Sample statistics (e.g., sample mean) computed from data collected by a monitoring network can be affected by three general factors: (1) random changes due to storms, rainfall, etc.; (2) seasonal changes in temperature, rainfall, etc.; and (3) serial correlation or duplication in information from sample to sample. (Closely spaced samples will tend to give similar information).In general, these effects have been noted, but their specific effects on water quality monitoring network design have not been well defined quantitatively. The purpose of this paper is to examine these effects with a specific data set and draw conclusions relative to sampling frequency determinations in network design.The design criterion adopted for this study of effects due to the above factors is the width of confidence intervals about annual sample geometric means of water quality variables. The data base for the study consisted of a daily record of 5 water quality variables at 9 monitoring stations in Illinois for a period of 1 year.Three general regions of frequencies were identified: (1) greater than approximately 30 samples per year where serial correlation plays a dominant role; (2) between approximately 10 and 30 samples per year where the effects of seasonal variation and serial correlation tended to cancel each other out; and (3) less than approximately 10 samples per year where seasonal variation plays a dominant role. In region 2, either seasonal variation and serial correlation should both be considered or both ignored. To consider only seasonal variation introduces more error than ignoring it. These results are network averages (over variables and stations) from one network, thus results for individual variables may deviate considerably from the average and from those for other networks.Financial support for this study was provided, in part, by the U.S. Environmental Protection Agency, grant number R805759-01-0.  相似文献   
148.
The colonisation of winter barley fields by spring breeding carabids and its temporal modulation by the amount of potential hibernation sites was studied. Species richness of carabids was lower in landscapes with high length of boundaries and a high amount of non-cropped open habitats during early stages of the beetles’ colonisation of arable fields. Species number of beetles with high dispersal potential responded to this landscape features at coarse spatial scales whereas beetles with low dispersal potential responded to intermediate scales. However, the negative impact of potential hibernation sites on colonisation diminished in later sampling phases. The patterns observed may be explained by both overwintering in arable soils in less complex landscapes and delayed colonisation in more complex landscapes. The seasonal patterns of landscape control suggest a need to account for temporal dynamics in interactions between species or functional groups and landscape properties. A high temporal resolution is needed in studies that focus on ecosystem function and services in agricultural landscapes, as direction of effect (positive/negative) of management on animal communities may change across spatial scales and within short time periods.  相似文献   
149.
退化喀斯特植被恢复过程中土壤酶活性特征研究   总被引:9,自引:1,他引:8  
邹军  喻理飞  李媛媛 《生态环境》2010,19(4):894-898
采用空间代替时间的方法,在贵州西南部花江典型喀斯特峡谷区选择裸地、草本、灌木、乔林四个植被恢复阶段作为退化植被恢复过程中不同恢复阶段。然后在一年中四个季节的每一季节分别对四个阶段样地进行取土,带回实验室风干磨细。分别用比色法测定脲酶活性,用比色法测定淀粉酶活性,用碘量滴定法测定多酚氧化酶活性。通过一年的实验结果表明,土壤酶活性随植被恢复过程逐渐提高,即裸地阶段〈草本群落阶段〈灌木群落阶段〈乔林阶段。土壤酶在土壤中分布是根际土大于非根际土,垂直剖面上,A层总是大于B层。脲酶、淀粉酶、多酚氧化酶活性在一年中总体表现为春夏季高,冬季低的特点,具体的酶表现不尽相同。各层次酶活性季节性变化趋势相同。  相似文献   
150.
At the start of the Loch Fleet Project in 1984, the Loch and the upper 7 km of its efferent stream were found to be devoid of trout (Salmo trutta) as a result of acidification. Following the liming treatments applied to the catchment, from 1986 the formerly toxic water quality conditions (pH ∼ 4.5, calcium ∼ 1 mgl-1, elevated aluminium and heavy metal levels) were eliminated, and trout were reintroduced on two occasions, in 1987 and 1988. A total of 520 fish were stocked, at a combined density equivalent to 5.5 kg ha-1. Surveys of the loch and stream populations were carried out annually until 1993 to monitor their development, using a range of techniques, including electrofishing, gill-netting, seine-netting, spawner trapping and mark-release recapture methods. Length and scale- analysis were used to investigate fish growth.

The trout population in Loch Fleet expanded rapidly as a result of natural spawning in the loch's main feeder stream, augmented by the use of an artificial spawning bed which was constructed at the loch outlet in 1990. in mid-1983 the stock density, estimated by mark-recapture census methods, had increased to 24.9 kg ha-1. Poor recruitment in the years 1991-93, however, reduced the rate of expansion and resulted in a population comprising mainly older individuals. the poor recruitment in these years was not fully explained but was not caused by water quality and was most likely a result of fry washout by spring spates.

Fish growth rates were high initially and were estimated on the basis of the Elliott trout growth model to be optimal for the prevailing water temperature regime of the loch. By 1991, growth rates had fallen, probably as a result of competition for food, but showed signs of recovery towards the end of the study period in 1993, following the period of lower population densities of young fish.

Trout rapidly repopulated the loch's outlet stream after 1987 but have remained sparse and have shown no signs of spawning within most of the stream. Water analyses have shown that the liming of the Loch Fleet catchment has minimal impact on downstream waters when flows are high, so that potentially toxic acid episodes have not been prevented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号