首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   5篇
  国内免费   22篇
安全科学   3篇
废物处理   1篇
环保管理   2篇
综合类   41篇
基础理论   5篇
污染及防治   1篇
评价与监测   8篇
社会与环境   1篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   10篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
31.
2019年7月石家庄市O3生成敏感性及控制策略解析   总被引:1,自引:1,他引:0  
基于石家庄市2019年7月近地面污染物和气象观测数据,分析夏季O3污染状况及其影响因素;结合WRF-CMAQ模式和O3浓度等值线(EKMA曲线),探究不同区域O3-VOCs-NOx的非线性响应关系,旨在探究最佳的前体物减排方案.结果表明,观测期间,石家庄市市区MDA8 O3超标率高达70.9%.污染天期间,伴随着高温、低湿、小风,且以南风和东南风为主.石家庄市市区属于VOCs控制区,郊县为NOx和VOCs协同控制区.在臭氧污染时段,市区在仅削减NOx排放,且削减比例超过50%时,持续减排NOx使得O3浓度呈逐渐下降趋势.在非臭氧日时段,市区在VOCs和NOx的削减比例大于1倍时,O3浓度才不会出现反弹.对于市区应考虑以仅削减VOCs为先;对于郊县区域而言,不同的NOx和VOCs削减比例下,O3浓度均会下降...  相似文献   
32.
“十四五”时期是河北南部城市(石家庄、邢台和邯郸)退出空气质量综合指数排名后10位的关键阶段.基于2020年4~10月南部城市的15个国家环境质量监测站臭氧(O3)逐时数据和3个挥发性有机物(VOCs)组分监测站的逐时数据及同期气象资料,采用时空演替、O3生成潜势(OFP)、后向轨迹模式和空间统计模型进行分析.结果表明:①南部城市4~10月O3变化呈倒"U"型分布,空间呈南高北低的格局,6月O3污染最重,其ρ(O3)依次为:邢台(233.8 μg ·m-3)>邯郸(225.2 μg ·m-3)>石家庄(224.8 μg ·m-3),O3与温度和风速呈正相关、与湿度和VOCs呈反相关;②4~10月ρ(TVOC)依次为:邢台(274 μg ·m-3)>石家庄(266 μg ·m-3)>邯郸(218 μg ·m-3),烯烃和芳香烃的总OFP占比均超过一半;③南部城市O3污染轨迹具有空间方向性和关联性,经过石家庄到邢台的轨迹ρ(O3)均值(198.92 μg ·m-3)最高,经过邯郸到达邢台的O3污染轨迹频数最多;④南部城市传输贡献上,邢台对石家庄的O3传输贡献率最高(27.39%),邯郸对邢台的VOCs传输贡献率最高(32.76%).  相似文献   
33.
石家庄市区土壤水分运移的稳定同位素特征分析   总被引:1,自引:0,他引:1  
陈同同  陈辉  韩璐  邢星  付阳阳 《环境科学》2015,36(10):3641-3648
根据2013年4月到2014年5月测得的石家庄市区降水和2013年石家庄市雨季土壤水、灌溉水的稳定氢氧同位素,通过稳定同位素示踪的方法从时间和空间的角度分析了不同土壤层位中的稳定同位素的变化规律,进而得出土壤的水分迁移过程.结果表明,过量氘均值为-6.188 5‰,反映了石家庄2013~2014年的年降水主要来自季风带来的海洋水汽,同时有一定的局地蒸发.石家庄土壤水的来源主要是降水,灌溉水在雨季前期有辅助作用,且雨季的降水量足以对土壤进行适当补给.10~100 cm土壤水的δ18O值随深度增大而减小,雨季最大蒸发深度在40 cm左右,取样期间基本上形成了一个土壤水δ18O峰值沿剖面徘徊中不断向下推进的情况,反映了降水的入渗、蒸发和新旧水的混合的相互作用.  相似文献   
34.
石家庄市制药行业VOCs排放特征分析及健康风险评价   总被引:3,自引:0,他引:3  
选择石家庄市9家典型制药企业作为研究目标,在对生产工艺进行调查的基础上研究了VOCs的排放特征,并利用国际公认的健康风险评价模型对制药行业排放的典型VOCs的健康风险进行了初步评价。结果表明,9家研究企业排放的VOCs浓度在10.6~162 mg·m-3间,抗生素类生产企业是主要排放源;识别出的9种典型VOCs为丙酮、乙酸乙酯、乙酸丁酯、乙醇、甲醇、二氯甲烷、正丁醇、异丙醇、甲苯;通过源成分谱确定出不同制药类型排放源的主要污染物:发酵类抗生素为乙酸丁酯(40%)、乙酸乙酯(31%)和正丁醇(17%);半合成类抗生素为丙酮(55%)、异丙醇(15%)和二氯甲烷(12%);维生素类为乙醇(41%)、丙酮(34%)和甲醇(13%);中药类为乙醇(75%)、甲醇(12%)。制药行业排放的VOCs健康风险危害指数为2.08×10-5,低于国际辐射防护委员会推荐的最大可接受水平,不会对暴露人群健康造成非致癌危害;正丁醇的危害指数最高,贡献率为48%。各典型制药企业排放口中二氯甲烷的致癌风险值在1.37×10-5~9.28×10-4间。  相似文献   
35.
石家庄秋季一次典型霾污染过程水溶性离子粒径分布特征   总被引:9,自引:8,他引:1  
为研究石家庄秋季典型霾污染过程中颗粒物水溶性离子的粒径谱分布,并进一步分析其来源及形成机制,于2013年10月15日到11月14日利用惯性撞击式8级采样器(Andersen)对石家庄城区大气颗粒物进行了为期一个月的连续采样,并使用离子色谱仪对观测期间一次霾污染过程颗粒物中8种水溶性无机离子(Na~+、NH_4~+、K~+、Mg~(2+)、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-))进行了分析.结果表明,石家庄秋季颗粒物污染严重,采样期间PM10和PM2.5日均值分别达到(361.2±138.7)μg·m~(-3)和(175.6±87.2)μg·m-3,PM_(2.5)日均值达到国家环境空气质量二级标准的2.3倍.此次污染过程,优良天、轻/中度污染天和重度污染天总悬浮颗粒物中总水溶性无机离子(TWSII)浓度日均值分别为(64.4±4.6)、(109.9±22.0)和(212.9±50.1)μg·m-3,由优良天过渡到重度污染天,总水溶性无机离子中二次无机离子(SO_4~(2-)、NO_3~-和NH_4~+)的比例由44.9%上升至77.6%,此次的霾污染过程主要来源于二次无机离子的生成和积累.优良天,SO_4~(2-)、NO_3~-和NH_4~+呈现双模态分布,峰值分别出现在0.43~0.65μm和4.7~5.8μm,而在轻/中度污染天和重度污染天,逐渐转变为单模态分布,峰值出现在0.65~1.1μm,随着高湿度下液相反应的加剧,二次无机离子由凝结模态向液滴模态转移的迹象明显.Na+、Mg~(2+)和Ca~(2+)这3种离子在优良天、轻/中度污染天和重度污染天的粒径分布相似,均以粗模态形式存在,在4.7~5.8μm出现峰值;K~+、Cl~-在优良天、轻/中度污染天和重度污染天均为双峰分布,但峰值出现的粒径段有所改变.  相似文献   
36.
抗战胜利70周年阅兵纪念活动空气质量保障前后,利用位于石家庄市大气自动梯度站20 m处单颗粒气溶胶质谱仪(SPAMS)对大气细颗粒物来源进行了解析.结果表明,阅兵活动当日,大气细颗粒物的首要污染源为机动车尾气(20.9%)和燃煤(20.6%),与空气质量保障前后相比,两类源的贡献均出现不同程度的降低,且颗粒物数浓度处于较低水平,保障措施起到了较好的效果,其中"控车"和"控煤"效果更为显著.来自机动车尾气的颗粒以短链元素碳和Mn为主,来自燃煤源的颗粒物以有机碳为主,来自工艺工业源的颗粒物以有机碳和金属为主,来自扬尘源的颗粒物以硅酸盐和钙为主.保障措施结束后,颗粒物浓度迅速攀升,是低压静稳不利气象条件和东南方向低空传输共同作用结果,其中扬尘和机动车尾气的贡献增长较为突出.  相似文献   
37.
随着社会经济的发展,大量含有抗生素的废水未经有效处理排放到水环境中,加剧了城市水环境中抗生素的污染.本研究以石家庄市地表水和地下水为研究对象,采用超高效液相色谱串联质谱法(HPLC-MS)分析了石家庄水环境中喹诺酮类(Quinolones,QNs)抗生素的空间分布特征,并采用风险熵值法(RQ)评估了石家庄市水环境中QNs的生态风险和健康风险.结果表明:1在石家庄市河流和水库中,QNs抗生素的浓度分别为98.43~4398.00 ng·L-1和9.99~49.24 ng·L-1,恩诺沙星(Enrofloxacin,ENR)和依诺沙星(Enoxacin,ENO)分别是河流和水库中主要的QNs抗生素;2在石家庄市地下水中,QNs抗生素的浓度为3.45~15.41 ng·L-1;3相关分析结果表明,在地表水中氧氟沙星(Ofloxacin,OFL)、诺氟沙星(Norfloxacin,NOR)、恩诺沙星(Enrofloxacin,ENR)、双氟沙星(Difloxacin,DIF)、沙氟沙星(Sarafloxacin,SAR)、恶喹酸(Oxolinic Acid,OXO)和氟甲喹(Flumequine,FLU)与温度(T)和总溶解性固体颗粒物(TDS)呈显著相关(p<0.01),而ENO与pH显著相关(p<0.01);在地下水中吡哌酸(Pipemidic Acid,PIP)和马波沙星(Marbofloxacin,MAR)与T显著相关;4地表水中QNs与地下水中QNs的相关性不显著,表明石家庄市地下水中QNs的主要来源不是地表水;5生态风险结果表明,石家庄市地表水中QNs总体处于高风险水平,而地下水QNs整体处于中低风险水平;6人体健康风险结果表明,石家庄市水环境中QNs抗生素的健康风险较低.总体来说,石家庄市水环境中QNs污染在地表水中更为严峻,而石家庄地表水中QNs浓度最高的区域为汪洋沟.  相似文献   
38.
石家庄市城市空间拓展动力机制分析   总被引:1,自引:0,他引:1  
城市空间拓展是城市生长的需求和体现.对一个城市空间扩展状态、时空规律和动力机制的探讨,可以正确把握其在城市化进程中所处的阶段,预测其未来发展趋势[1].以河北省省会石家庄市为例,回顾了其城市空间拓展的演变进程,分析了其城市空间结构的特征以及空间拓展的动力机制,提出了石家庄市未来城市空间拓展的建议.  相似文献   
39.
对石家庄市2016年12月14—23日一次重污染过程的逐时空气质量和气象资料进行了分析。结果表明,低压均压类天气控制下,较高的相对湿度和水汽压,<2.5 m/s的低风速以及<500 m的混合层高度是该次重污染形成和持续的重要原因。当风速<2.5 m/s,且相对湿度>45%或水汽压>3.6 hPa时,空气质量明显较差;当风速<2 m/s,且湿度>65%或水汽压>4 hPa时,污染级别达到严重污染;该次重污染形成与维持的地面气压临界值为1 017 hPa,当气压>1 017 hPa时,环境空气质量相对较好;当气压<1017 hPa时,更容易发生严重污染。  相似文献   
40.
石家庄南郊黑碳气溶胶污染特征与来源分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用十波段黑碳仪实时监测石家庄南郊2018年9月—2019年7月大气中黑碳(Black Carbon,BC)质量浓度,并与同期CO、NO2、SO2质量浓度进行相关性分析,结合后向轨迹模型研究了该地区的BC质量浓度变化特征及潜在来源.结果表明,观测期间BC平均质量浓度为(4.35±3.59)μg·m-3,最大频数浓度法估算的BC本底质量浓度为1.0 μg·m-3,不同季节BC平均质量浓度变化趋势为:冬季>秋季>春季>夏季.BC质量浓度日变化具有双峰特征,高峰时段为6:00—9:00和19:00—22:00.BC气溶胶ngström指数α的分析及BC与CO、NO2、SO2相关性分析表明,以化石燃料为能源的工业源和交通源对石家庄南郊BC的贡献占主导地位.后向轨迹分析表明,石家庄南郊各季节BC主要受东向、东南向河北省内气团(占比35.46%~48.40%)和西向、西北向途经内蒙古、陕西北部、山西中部气团(占比15.60%~23.19%)的影响.浓度权重轨迹分析表明,BC潜在源区主要集中在河北南部、山西中部和河南北部.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号