首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   6篇
  国内免费   19篇
安全科学   1篇
废物处理   1篇
环保管理   137篇
综合类   67篇
基础理论   18篇
污染及防治   13篇
评价与监测   10篇
社会与环境   12篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   12篇
  2014年   7篇
  2013年   8篇
  2012年   8篇
  2011年   16篇
  2010年   7篇
  2009年   19篇
  2008年   24篇
  2007年   22篇
  2006年   10篇
  2005年   8篇
  2004年   13篇
  2003年   8篇
  2002年   7篇
  2001年   8篇
  2000年   7篇
  1999年   8篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   5篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1975年   1篇
  1974年   1篇
  1968年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
111.
Typical tasks of a river monitoring network design include the selection of the water quality parameters, selection of sampling and measurement methods for these parameters, identification of the locations of sampling stations and determination of the sampling frequencies. These primary design considerations may require a variety of objectives, constraints and solutions. In this study we focus on the optimal river water quality monitoring network design aspect of the overall monitoring program and propose a novel methodology for the analysis of this problem. In the proposed analysis, the locations of sampling sites are determined such that the contaminant detection time is minimized for the river network while achieving maximum reliability for the monitoring system performance. Altamaha river system in the State of Georgia, USA is chosen as an example to demonstrate the proposed methodology. The results show that the proposed model can be effectively used for the optimal design of monitoring networks in river systems.  相似文献   
112.
Planners advocate best management practices (BMPs) to reduce loss of sediment and nutrients in agricultural areas. However, the scientific community lacks tools that use readily available data to investigate the relationships between BMPs and their spatial locations and water quality. In rural, humid regions where runoff is associated with saturation-excess processes from variable source areas (VSAs), BMPs are potentially most effective when they are located in areas that produce the majority of the runoff. Thus, two critical elements necessary to predict the water quality impact of BMPs include correct identification of VSAs and accurate predictions of nutrient reduction due to particular BMPs. The objective of this research was to determine the effectiveness of BMPs using the Variable Source Loading Function (VSLF) model, which captures the spatial and temporal evolutions of VSAs in the landscape. Data from a long-term monitoring campaign on a 164-ha farm in the New York City source watersheds in the Catskills Mountains of New York state were used to evaluate the effectiveness of a range of BMPs. The data spanned an 11-year period over which a suite of BMPs, including a nutrient management plan, riparian buffers, filter strips and fencing, was installed to reduce phosphorus (P) loading. Despite its simplicity, VSLF predicted the spatial distribution of runoff producing areas well. Dissolved P reductions were simulated well by using calibrated reduction factors for various BMPs in the VSLF model. Total P losses decreased only after cattle crossings were installed in the creek. The results demonstrated that BMPs, when sited with respect to VSAs, reduce P loss from agricultural watersheds, providing useful information for targeted water quality management.  相似文献   
113.
Experience with collaborative approaches to natural resource and environmental management has grown substantially over the past 20 years, and multi-interest, shared-resources initiatives have become prevalent in the United States and internationally. Although often viewed as “grass-roots” and locally initiated, governmental participants are crucial to the success of collaborative efforts, and important questions remain regarding their appropriate roles, including roles in partnership initiation. In the midst of growing governmental support for collaborative approaches in the mid-1990s, the primary natural resource and environmental management agency in Wisconsin (USA) attempted to generate a statewide system of self-sustaining, collaborative partnerships, organized around the state’s river basin boundaries. The agency expected the partnerships to enhance participation by stakeholders, leverage additional resources, and help move the agency toward more integrated and ecosystem-based resource management initiatives. Most of the basin partnerships did form and function, but ten years after this initiative, the agency has moved away from these partnerships and half have disbanded. Those that remain active have changed, but continue to work closely with agency staff. Those no longer functioning lacked clear focus, were dependent upon agency leadership, or could not overcome issues of scale. This article outlines the context for state support of collaborative initiatives and explores Wisconsin’s experience with basin partnerships by discussing their formation and reviewing governmental roles in partnerships’ emergence and change. Wisconsin’s experience suggests benefits from agency support and agency responsiveness to partnership opportunities, but cautions about expectations for initiating general-purpose partnerships.  相似文献   
114.
Total annual nutrient loads are a function of both watershed characteristics and the magnitude of nutrient mobilizing events. We investigated linkages among land cover, discharge and total phosphorus (TP) concentrations, and loads in 25 Kansas streams. Stream monitoring locations were selected from the Kansas Department of Health and Environment stream chemistry long-term monitoring network sites at or near U.S. Geological Survey stream gauges. We linked each sample with concurrent discharge data to improve our ability to estimate TP concentrations and loads across the full range of possible flow conditions. Median TP concentration was strongly linked (R 2 = 76%) to the presence of cropland in the riparian zones of the mostly perennial streams. At baseflow, discharge data did not improve prediction of TP, but at high flows discharge was strongly linked to concentration (a threshold response occurred). Our data suggest that on average 88% of the total load occurred during the 10% of the time with the greatest discharge. Modeled reductions in peak discharges, representing increased hydrologic retention, predicted greater decreases in total annual loads than reductions of ambient concentrations because high discharge and elevated phosphorus concentrations had multiplicative effects. No measure of land use provided significant predictive power for concentrations when discharge was elevated or for concentration rise rates under increasing discharge. These results suggest that reductions of baseflow concentrations of TP in streams without wastewater dischargers may be managed by reductions of cropland uses in the riparian corridor. Additional measures may be needed to manage TP annual loads, due to the large percentage of the TP load occurring during a few high-flow events each year.  相似文献   
115.
Input- and output-oriented approaches to landscape management have distinct roles for resource protection, environmental restoration, and sustainable land management. Implementing recent proposals for ecosystem management in the western United States involves a synthesis of input and output management. Within the broader context of ecosystem management, input management focuses on tailoring land use to the landscape, whereas output management employs assessments of resource condition to trigger modified management activity once resources are degraded to specified threshold conditions. Current approaches to landscape-scale management, however, tend to rely primarily on output-oriented strategies that are most effective for monitoring environmental conditions. Current uses of input management focus on environmental impact assessments, which generally are site- or project-specific analyses. The compeexity and dynamic nature of ecosystems, and the range of scales over which ecological processes operate, imply that development and incorporation of input-oriented approaches into landscape-scale management is necessary to implement ecosystem management as a strategy for sustainable land use.  相似文献   
116.
117.
以新疆三工河流域绿洲为例,应用遥感、地理信息系统、空间插值和统计分析的方法,初步分析干旱区绿洲土地利用/土地覆被变化对绿洲浅层地下水位水质变化的影响。研究数据包括1978、1987和1998年三期遥感数据和近25年8口常年观测井水位数据及1987和1998年两期20口观测井水质数据。结果表明,绿洲随着城市、工矿用地为主的非农业用地和以耕地为主的农业用地的持续增加,浅层地下水水位与水质发生了显著性的时空变化。冲洪积扇绿洲主要城镇聚居区地下水位以年均45cm的速率下降,冲积平原下部绿洲地下水位以年均7cm的速率呈现缓慢的上升趋势;绿洲地下水水质趋于恶化,矿化度总体呈现上升的态势,且冲积平原绿洲地下水矿化度上升的幅度普遍大于冲洪积扇绿洲,这与地形、水文地质条件、土地资源开发、灌排强度、地表蒸发、化学肥料和农药的使用密切相关。  相似文献   
118.
北京市妫水河流域景观生态学分析   总被引:2,自引:0,他引:2  
基于GIS的空间分析平台,以景观生态学的方法建模,分析了北京市妫水河流域的景观格局特征,并与妫水河平原的景观格局特征进行了比较,发现在妫水河平原范围内,由于人为干扰程度的加剧,整体生态格局的异质性下降、碎裂化增加,景观生态格局的稳定性和安全性比之妫水河流域有所下降.分析了妫水河流域面临的问题及其原因,进而提出妫水河流域生态恢复的建议和措施.  相似文献   
119.
The Qinghai Lake Watershed, containing the largest saline lake in northwest of China, has suffered from severe sandy land development in recent years. This paper analyzes its daily precipitation, temperature, and wind from 1958 to 2001, and the spatial and temporal distributions of sandy land through the interpretation of remote sensing images covering four years (1977, 1987, 2000, and 2004). Results showed that since the middle of the 1960s, the daily precipitation (P) of 0<P⩽5 mm decreased, while the P>20 mm increased significantly (S<0.05) in their annual total amounts and days. The maximum daily precipitation also increased significantly. Both the maximum dry spell and the total dry spell of more than ten days had a significant upward trend. Since the beginning of the 1960s, all the extremely high, extremely low and mean temperatures increased significantly (S<0.01), at a rate of 0.1°C/10a, 0.2°C/10a, and 0.2°C/10a, respectively. The days with extremely high temperature had a significant upward trend, while the days with extremely low temperature had a significant downward trend. The Qinghai Lake was significantly shrinking (S<0.01) and provided abundant sediments for Aeolian erosion. The NNW wind prevailed in the watershed, and the largest scale wind was from the west and concentrated on the dry months. As a result, the sandy land was mainly born on the east bank of Qinghai Lake. The total sandy land area in the watershed had grown from 587.4 km2, 660.7 km2, 697.6 km2 to 805.8 km2, accordingly, its area percentage growing from 2.0%, 2.2%, 2.4% to 2.7%, respectively.  相似文献   
120.
为了阐明三峡库区第一大支流香溪河流域人类活动对磷输入的影响程度,收集流域所涉及的2001~2019年的乡镇统计数据,运用改进的人类活动净磷输入(NAPI)模型,分析了该流域NAPI的发展趋势.结果表明:在时间尺度上,香溪河流域2001~2019年的NAPI整体呈下降趋势;在空间尺度上,NAPI呈现东北部高于西南部的趋势,影响香溪河流域NAPI的主要乡镇为黄粮镇、峡口镇和昭君镇,占香溪河流域NAPI的63.8%;河流磷输出占NAPI的百分比为10.7%~79.5%;从NAPI结构上看,影响香溪河流域NAPI主要的影响因素为磷肥施入量,占香溪河流域NAPI的46%~68%,次要影响因素为食物磷和磷化工及磷矿开采导致磷素释放量,分别占香溪河流域NAPI的14%~32%和16%~24%;从NAPI影响因素上看,NAPI与人口密度和耕地面积占比均呈极显著正相关(P<0.001),而在小流域研究尺度上,NAPI与河流磷输出的相关性不显著(P>0.05),不具有直接的响应关系.因此,香溪河流域磷素管理应优先考虑重点区域(黄粮镇、峡口镇和昭君镇),控制化肥施用量,并提高工厂污染物排放标准.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号