全文获取类型
收费全文 | 1767篇 |
免费 | 49篇 |
国内免费 | 269篇 |
专业分类
安全科学 | 35篇 |
废物处理 | 26篇 |
环保管理 | 246篇 |
综合类 | 646篇 |
基础理论 | 292篇 |
污染及防治 | 512篇 |
评价与监测 | 250篇 |
社会与环境 | 63篇 |
灾害及防治 | 15篇 |
出版年
2024年 | 4篇 |
2023年 | 17篇 |
2022年 | 26篇 |
2021年 | 36篇 |
2020年 | 60篇 |
2019年 | 36篇 |
2018年 | 48篇 |
2017年 | 39篇 |
2016年 | 60篇 |
2015年 | 71篇 |
2014年 | 78篇 |
2013年 | 141篇 |
2012年 | 105篇 |
2011年 | 206篇 |
2010年 | 114篇 |
2009年 | 197篇 |
2008年 | 170篇 |
2007年 | 143篇 |
2006年 | 83篇 |
2005年 | 49篇 |
2004年 | 40篇 |
2003年 | 52篇 |
2002年 | 40篇 |
2001年 | 32篇 |
2000年 | 41篇 |
1999年 | 22篇 |
1998年 | 17篇 |
1997年 | 18篇 |
1996年 | 22篇 |
1995年 | 12篇 |
1994年 | 14篇 |
1993年 | 30篇 |
1992年 | 21篇 |
1991年 | 3篇 |
1990年 | 9篇 |
1989年 | 5篇 |
1988年 | 6篇 |
1987年 | 2篇 |
1986年 | 5篇 |
1985年 | 2篇 |
1982年 | 1篇 |
1981年 | 3篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有2085条查询结果,搜索用时 15 毫秒
101.
Renata Kalinowska Barbara Pawlik-Skowrońska 《Environmental pollution (Barking, Essex : 1987)》2010,158(8):2778-2785
Some algae inhabit Cu-polluted soils. Intracellular Cu-accumulation and production of non-protein thiols in response to copper stress were compared in Stichococcus minor and Geminella terricola isolated from Cu-polluted and unpolluted soils, respectively. Cu-exposed (0.5 μM) S. minor accumulated lower amounts of copper (0.38 mM) than G. terricola (4.20 mM) and maintained 8.5-fold higher level of glutathione (GSH) than G. terricola. The ratio GSH/0.5 GSSG in the Cu-treated S. minor (7.21) was 7-times higher than in G. terricola. Reduced and oxidized forms of phytochelatins were found in both algae. Under copper stress (5 μM) the ratio -SHtotal/Cuintracellular in S. minor ranged from 2.3 to 6.2, while it was lower than 1.0 in G. terricola. Low intracellular Cu-accumulation and maintenance of high GSH level concomitant with PCs production seem to be responsible for a higher Cu-resistance of S. minor than G. terricola. 相似文献
102.
X. Wei S. C. Wu X. P. Nie A. Yediler M. H. Wong 《Journal of environmental science and health. Part. B》2013,48(5):461-471
A pot trial was carried out to investigate the adverse effects of tetracycline (TC) on soil microbial communities, microbial activities, and the growth of ryegrass (Lolium perenne L). The results showed that the presence of TC significantly disturbed the structure of microbial communities and inhibited soil microbial activities in terms of urease, acid phosphatase and dehydrogenase (p < 0.05). Plant biomass was adversely influenced by TC, especially the roots with a reduction of 40% when compared with the control. Furthermore, TC decreased the assimilation of phosphorus by the plant although the concentration of phosphorus was increased by 20% due to decreased plant biomass. TC seemed to increase the concentration of dissolved organic carbon (by 20%) in soil. The findings implied that the agricultural use of animal manure or fishpond sediment containing considerable amounts of antibiotics may give rise to ecological risks. 相似文献
103.
Paul M. White Jr. Thomas L. Potter 《Journal of environmental science and health. Part. B》2013,48(7):728-737
This work focused on the interactive effects of the fungicide chlorothalonil (2,3,4,6-tetrachloro-1,3-benzendicarbonitrile) and gypsum on the persistence of the soil-residual herbicide metolachlor (2-chloro-N-(6-ethyl-o-tolyl)-N-[(1RS)-2-methoxy-1-methylethyl]acetamide). Gypsum application was included due to its widespread use on peanut (Arachis hypogaea). Both agricultural grade gypsum and reagent CaSO4-2H2O were tested. A laboratory soil incubation was conducted to evaluate interactive effects. Results indicated 1.5X greater metolachlor half-life (DT50) in soil amended with chlorothalonil (37 d) as compared to control soil (25 d). The two gypsum sources alone increased metolachlor DT50 to about 32 d and with the combination of chlorothalonil and gypsum, DT50 was 50 d, 2-fold greater than the control. Chlorothalonil dissipation was rapid (DT50 < 4d). A possible explanation for metolachlor dissipation kinetics is a build-up of the chlorothalonil intermediate (4-hydroxychlorothalonil) which limited soil microbial activity and depleted glutathione S-transferase (GST) from chlorothalonil detoxification. Further information related to gypsum impacts is needed. Results confirm previous reports of chlorothalonil impeding metolachlor dissipation and showed the gypsum application extended persistence even longer. Farming practices, such as reducing metolachlor application rates, may need to be adjusted for peanut cropping systems where chlorothalonil and gypsum are used. 相似文献
104.
Mahrous M. Kandil Ahmed F. El-Aswad William C. Koskinen 《Journal of environmental science and health. Part. B》2013,48(7):473-483
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur. 相似文献
105.
《Journal of environmental science and health. Part. B》2013,48(5-6):757-764
Abstract A laboratory pot experiment was conducted to study the effect of amending soil with four different sources of organic matter on the degradation rate of α and β endosulfan isomers. Poultry by-product meal, poultry manure, dairy manure, and municipal solid waste compost were cured, dried, ground (<1 mm) and thoroughly mixed with a calcareous soil at a rate of 2% and placed in plastic pots. Endosulfan was added at the rate of 20 mg kg?1. The moisture level was kept near field capacity and the pots were kept at room temperature. Soil sub-samples, 100 g each, were collected from every pot at days 1, 8, 15, 22, 29, 43, and 57 for the measurement of endosulfan isomers. Endosulfan residues were extracted from the soil samples with acetone. The supernatant was filtered through anhydrous sodium sulphate, 5 mL aliquot was diluted to 25 mL with hexane, mixed well, and then two sub-samples from the filtrates were analyzed for α and β endosulfan isomers by gas chromatography. The results indicated that the half-life (T ½) of α-endosulfan in the poultry by-product meal treatment was 15 days compared to about 22 days in the other treatments. The T ½ of β-endosulfan was 22 days in the poultry by-product meal treatment and followed a bi-phasic pattern, 57 days in the municipal solid waste compost treatment and the extrapolated T ½ was about 115 days for the other three treatments. 相似文献
106.
《Journal of environmental science and health. Part. B》2013,48(5-6):765-777
Abstract Four methods were developed for the analysis of fluroxypyr in soil samples from oil palm plantations. The first method involved the extraction of the herbicide with 0.05 M NaOH in methanol followed by purification using acid base partition. The concentrated material was subjected to derivatization and then cleaning process using a florisil column and finally analyzed by gas chromatography (GC) equipped with electron capture detector (ECD). By this method, the recovery of fluroxypyr from the spiked soil ranged from 70 to 104% with the minimum detection limit at 5 µg/kg. The second method involved solid liquid extraction of fluroxypyr using a horizontal shaker followed by quantification using high performance liquid chromatography (HPLC) equipped with UV detector. The recovery of fluroxypyr using this method, ranged from 80 to 120% when the soil was spiked with fluroxypyr at 0.1–0.2 µg/g soil. In the third method, the recovery of fluroxypyr was determined by solid liquid extraction using an ultrasonic bath. The recovery of fluroxypyr at spiking levels of 4–50 µg/L ranged from 88 to 98% with relative standard deviations of 3.0–5.8% with a minimum detection limit of 4 µg/kg. In the fourth method, fluroxypyr was extracted using the solid liquid extraction method followed by the cleaning up step with OASIS® HLB (polyvinyl dibenzene). The recovery of fluroxypyr was between 91 and 95% with relative standard deviations of 4.2–6.2%, respectively. The limit of detection in method 4 was further improved to 1 µg/kg. When the weight of soil used was increased 4 fold, the recovery of fluroxypyr at spiking level of 1–50 µg/kg ranged from 82–107% with relative standard deviations of 0.5–4.7%. 相似文献
107.
《Journal of environmental science and health. Part. B》2013,48(3):187-199
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Aside from total organic carbon, the ratio among the different organic matter fractions [dissolved organic matter, fulvic acid (FA), humic acid (HA) and humin] can also affect the mobility of these hydrocarbons in soils. In this study the effect of the whole organic carbon pool has been compared with that of HA and FA on the translocation of four PAHs (biphenyl, fluorene, phenanthrene and pyrene) in soil columns. Oxidized and untreated soil columns with and without HA or FA, were prepared, spilled with hydrocarbons and leached with a 0.01 M CaCl2 solution. The influence of HA and FA on PAH translocation was investigated through determinations of the PAH contents and total organic carbon (TOC) in the layers of the columns. All molecules were moved vertically by the percolating solutions, their concentrations decreasing with depths. The non-oxidized soil tended to retain more PAHs (96%) than the oxidized one (60%), confirming that organic matter plays an important role in controlling PAH leaching. The whole organic matter pool reduced the translocation of pollutants downward the profile. The addition of HA enhanced this behaviour, by increasing the PAH retention in the top layers (7.55 mg and 4.00 mg in the top two layers, respectively) while FA increased their mobility (only 2.30 and 2.90 mg of PAHs were found in the top layers) and favoured leaching. In fact, in the presence of HA alone, the higher amounts of PAHs retained at the surface and the good correlation (r2=0.936) between TOC and hydrocarbon distribution can be attributed to a parallel distribution of PAHs and HA, while in the presence of FA, the higher mobility of PAHs can be attributed to the high mobility of the humic material, as expected by its extensive hydrophilic characteristics. 相似文献
108.
《Journal of environmental science and health. Part. B》2013,48(6):561-571
Microbial inhibitors such as mercuric chloride are frequently used to sterilize soil or soil–water slurries in experimental studies on the fate of xenobiotics in the environment. This study examined the influence of mercuric chloride additions to soil–water slurries on the sorptive behaviour of a phenoxy herbicide (2,4-D) in soil. The results demonstrated that mercuric chloride strongly decreased the capacity of the soil to retain herbicides, and that the interference of mercuric chloride with herbicide sorption increased with increasing soil organic carbon contents. Because of the competitive sorption between mercuric chloride and the phenoxy herbicide, we conclude that mercuric chloride may not be a good soil sterilization procedure for use in xenobiotic fate studies. 相似文献
109.
《Journal of environmental science and health. Part. B》2013,48(2):355-362
Atmospheric emission of the soil fumigant 1,3-dichloropropene (1,3-D) has been associated with the deterioration of air quality in certain fumigation areas. To minimize the environmental impacts of 1,3-D, feasible and cost-effective control strategies are in need of investigation. One approach to reduce emissions is to enhance the surface layer of a soil to degrade 1,3-D. A field study was conducted to determine the effectiveness of composted steer manure (SM) and composted chicken manure (CKM) to reduce 1,3-D emissions. SM or CKM were applied to the top 5-cm soil layer at a rate of 3.3 or 6.5 kg m?2. An emulsified formulation of 1,3-D was applied through drip tape at 130.6 kg ha?1 into raised beds. The drip tape was placed in the center of each bed (102 cm wide) and 15 cm below the surface. Passive flux chambers were used to measure the loss of 1,3-D for 170 h after fumigant application. Results indicated that the cumulative loss of 1,3-D was about 48% and 28% lower in SM- and CKM-amended beds, respectively, than in the unamended beds. Overall, both isomers of 1,3-D behaved similarly in all treatments. The cumulative loss of 1,3-D, however, was not significantly different between the two manure application rates for either SM or CKM. The results of this study demonstrate the feasibility of using composted animal manures to control 1,3-D emissions. 相似文献
110.
Pablo Souza-Alonso Alejandra Guisande Luís González 《Journal of environmental science and health. Part. B》2013,48(3):184-189
Triclopyr is a commonly used herbicide in the control of woody plants and can exhibit toxic effects to soil microorganisms. However, the impact on soils invaded by plant exotics has not yet been addressed. Here, we present the results of an 18-month field study conducted to evaluate the impact of triclopyr on the structure of fungal and bacterial communities in soils invaded by Acacia dealbata Link, through the use of denature gradient gel electrophoresis. After triclopyr application, analyses of bacterial fingerprints suggested a change in the structure of the soil bacterial community, whereas the structure of the soil fungal community remained unaltered. Bacterial density and F:B ratio values changed across the year but were not altered due to herbicide spraying. On the contrary, fungal diversity was increased in plots sprayed with triclopyr 5 months after the first application. Richness and diversity (H´) of both bacteria and fungi were not modified after triclopyr application. 相似文献