全文获取类型
收费全文 | 198篇 |
免费 | 0篇 |
国内免费 | 19篇 |
专业分类
安全科学 | 1篇 |
废物处理 | 2篇 |
环保管理 | 15篇 |
综合类 | 27篇 |
基础理论 | 11篇 |
污染及防治 | 153篇 |
评价与监测 | 1篇 |
社会与环境 | 7篇 |
出版年
2023年 | 1篇 |
2022年 | 4篇 |
2021年 | 3篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 1篇 |
2017年 | 4篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 1篇 |
2013年 | 25篇 |
2012年 | 17篇 |
2011年 | 34篇 |
2010年 | 12篇 |
2009年 | 24篇 |
2008年 | 19篇 |
2007年 | 8篇 |
2006年 | 12篇 |
2005年 | 6篇 |
2004年 | 3篇 |
2003年 | 15篇 |
2002年 | 3篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1999年 | 4篇 |
1997年 | 5篇 |
1996年 | 1篇 |
1994年 | 1篇 |
排序方式: 共有217条查询结果,搜索用时 31 毫秒
151.
Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils 总被引:4,自引:0,他引:4
Pyrolysis of vegetative biomass into biochar and application of the more stable form of carbon to soil have been shown to be effective in reducing the emission of greenhouse gases, improving soil fertility, and sequestering soil contaminants. However, there is still lack of information about the impact of biochar amendment in agricultural soils on the sorption and environmental fate of pesticides. In this study, we investigated the sorption and dissipation of a neonicotinoid insecticide acetamiprid in three typical Chinese agricultural soils, which were amended by a red gum wood (Eucalyptus spp.) derived biochar. Our results showed that the amendment of biochar (0.5% (w/w)) to the soils could significantly increase the sorption of acetamiprid, but the magnitudes of enhancement were varied. Contributions of 0.5% newly-added biochar to the overall sorption of acetamiprid were 52.3%, 27.4% and 11.6% for red soil, paddy soil and black soil, respectively. The dissipation of acetamiprid in soils amended with biochar was retarded compared to that in soils without biochar amendment. Similar to the sorption experiment, in soil with higher content of organic matter, the retardation of biochar on the dissipation of acetamiprid was lower than that with lower content of organic matter. The different effects of biochar in agricultural soils may attribute to the interaction of soil components with biochar, which would block the pore or compete for binding site of biochar. Aging effect of biochar application in agricultural soils and field experiments need to be further investigated. 相似文献
152.
The sorption of chlorinated solvents and degradation products on seven natural clayey till samples from three contaminated sites was investigated by laboratory batch experiments in order to obtain reliable sorption coefficients (Kd values). The sorption isotherms for all compounds were nearly linear, but fitted by Freundlich isotherms slightly better over the entire concentration range. For chloroethylenes, tetrachloroethylene (PCE) was most strongly sorbed to the clayey till samples (Kd = 0.84-2.45 L kg−1), followed by trichloroethylene (TCE, Kd = 0.62-0.96 L kg−1), cis-dichloroethylene (cis-DCE, Kd = 0.17-0.82 L kg−1) and vinyl chloride (VC, Kd = 0.12-0.36 L kg−1). For chloroethanes, 1,1,1-trichloroethane (1,1,1-TCA) was most strongly sorbed (Kd = 0.2-0.45 L kg−1), followed by 1,1-dichloroethane (1,1-DCA, Kd = 0.16-0.24 L kg−1) and chloroethane (CA, Kd = 0.12-0.18 L kg−1). This is consistent with the order of hydrophobicity of the compounds. The octanol-water coefficient (log Kow) correlated slightly better with log Kd values than log Koc values indicating that the Kd values may be independent of the actual organic carbon content (foc). The estimated log Koc or log Kd for chlorinated solvents and degradation products determined by regression of data in this study were significantly higher than values determined by previously published empirical relationships. The site specific Kd values as well as the new empirical relationship compared well with calculations on water and soil core concentration for cis-DCE and VC from the Rugårdsvej site. In conclusion, this study with a wide range of chlorinated ethenes and ethanes - in line with previous studies on PCE and TCE - suggest that sorption in clayey tills could be higher than typically expected. 相似文献
153.
The aim of this study was to examine the effects of chemical nonylphenols (NPs) on the antioxidant system of Microcystis aeruginosa strains. The degradation and sorption of NPs by M. aeruginosa were also evaluated. High concentrations of NPs (1 and 2 mg/l) were found to cause increases in superoxidase dismutase (SOD)
and glutathione-S-transferase (GST) activities and in glutathione (GSH) levels. These results suggest that toxic stress manifested by elevated
SOD and GST levels and GSH contents may be responsible for the toxicity of NPs to M. aeruginosa and that the algal cells could improve their antioxidant and detoxification ability through the enhancement of enzymatic
and nonenzymatic prevention substances. The observed elevations in GSH levels and GST activities were relatively higher than
those in SOD activities, indicating that GSH and GST contributed more in eliminating toxic effects than SOD. Low concentrations
of NPs (0.05–0.2 mg/l) enhanced cell growth and decreased GST activity in algal cells of M. aeruginosa, suggesting that NPs may have acted as a protecting factor, such as an antioxidant. The larger portion of the NPs (>60%)
disappeared after 12 days of incubation, indicating the strong ability of M. aeruginosa to degrade the moderate persistent NP compounds. The sorption ratio of M. aeruginosa after a 12-day exposure to low nominal concentrations of NPs (0.02–0.5 mg/l) was relatively high (>30%). The fact that M. aeruginosa effectively resisted the toxic effects of NPs and strongly degraded these pollutants indicate that M. aeruginosa cells have a strong ability to adapt to variations in environmental conditions and that low and moderate concentrations of
organic compounds may favor its survival. Further studies are needed to provide detailed information on the fate of persistent
organic pollutants and the survival of algae and to determine the possible role of organic pollutants in the occurrence of
water blooms in eutrophic lakes. 相似文献
154.
Part IV—sorption of hydrophobic organic contaminants 总被引:3,自引:0,他引:3
155.
Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid–liquid interface reactions to obtain molecular level speciation insight.We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto γ-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S–O–An(III)(OH)x(2 − x)(H2O)5 − x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions.The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide–colloid interaction. Kinetic stabilization of colloid bound actinides can be due to inclusion into inorganic colloid matrix or by macromolecular rearrangement in case of organic, humic/fulvic like colloids. Only a combination of spectroscopy, microscopy and classical batch sorption experiments can help to elucidate the actinide–colloid interaction mechanisms and thus contribute to the assessment of colloids for radionuclide migration. 相似文献
156.
Rico-Rico A Temara A Hermens JL 《Environmental pollution (Barking, Essex : 1987)》2009,157(2):575-581
The study of the effect of the sorption of linear alkylbenzene sulfonates (LAS) on the bioavailability to marine benthic organisms is essential to refine the environmental risk assessment of these compounds. According to the equilibrium partitioning theory (EqP), the effect concentration in water-only exposure will be similar to the effect concentration in the sediment pore water. In this work, sorption and desorption experiments with two marine sediments were carried out using the compound C12-2-LAS. The effect of the sediment sorption on the toxicity of benthic organisms was studied in water-only and in sediment bioassays with the marine mud shrimp Corophium volutator. In addition, three common spiking methods were tested for its application in the toxicity tests, as well as the stability of the surfactant during the water-only and sediment-water test duration. LC50 values obtained from water-only exposure showed a good correspondence with the pore water concentrations calculated from the sorption and desorption isotherms in the spiked sediments. 相似文献
157.
Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils 总被引:3,自引:0,他引:3
Yong-Tao Li Thierry Becquer Cécile Quantin 《Environmental pollution (Barking, Essex : 1987)》2009,157(4):1249-1257
The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils. 相似文献
158.
Oliver R. Price Margaret A. Oliver Martin Wood 《Environmental pollution (Barking, Essex : 1987)》2009,157(5):1689-1696
An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field. 相似文献
159.
Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils 总被引:2,自引:0,他引:2
Wei Chen Lei Hou Xiaoli Luo Lingyan Zhu 《Environmental pollution (Barking, Essex : 1987)》2009,157(6):1894-1903
In situ chemical oxidation is a commonly applied soil and groundwater remediation technology, but can have significant effects on soil properties, which in turn might affect fate and transport of organic contaminants. In this study, it was found that oxidation treatment resulted mainly in breakdown of soil organic matter (SOM) components. Sorption of naphthalene and phenanthrene to the original soils and the KMnO4-treated soils was linear, indicating that hydrophobic partitioning to SOM was the predominant mechanism for sorption. Desorption from the original and treated soils was highly resistant, and was well modeled with a biphasic desorption model. Desorption of residual naphthalene after treating naphthalene-contaminated soils with different doses of KMnO4 also followed the biphasic desorption model very well. It appears that neither changes of soil properties caused by chemical oxidation nor direct chemical oxidation of contaminated soils had a noticeable effect on the nature of PAH-SOM interactions. 相似文献
160.
Białk-Bielińska A Maszkowska J Mrozik W Bielawska A Kołodziejska M Palavinskas R Stepnowski P Kumirska J 《Chemosphere》2012,86(10):1059-1065
Sulfonamides (SAs) are one of the oldest groups of veterinary chemotherapeutic agents. As these compounds are not completely metabolized in animals, a high proportion of the native form is excreted in feces and urine. They are therefore released either directly to the environment in aquacultures and by grazing animals, or indirectly during the application of manure or slurry. Once released into the environment, SAs become distributed among various environmental compartments and may be transported to surface or ground waters. The physicochemical properties of SAs, dosage and nature of the matrix are the factors mainly responsible for their distribution in the natural environment. Although these rather polar compounds have been in use for over half a century, knowledge of their fate and behavior in soil ecosystems is still limited. Therefore, in this work we have determined the sorption potential of sulfadimethoxine and sulfaguanidine on various natural soils. The influence on sorption of external factors, such as ionic strength and pH, were also determined. The sorption coefficients (Kd) obtained for the sulfonamides investigated were quite low (from 0.20 to 381.17 mL g−1 for sulfadimethoxine and from 0.39 to 35.09 mL g−1 for sulfaguanidine), which indicated that these substances are highly mobile and have the potential to run off into surface waters and/or infiltrate ground water. Moreover, the sorption of these pharmaceuticals was found to be influenced by OC, soil solution pH and ionic strength, with higher Kd values for soils of higher OC and lower Kd values with increasing pH and ionic strength. 相似文献