首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
安全科学   4篇
环保管理   1篇
综合类   2篇
污染及防治   9篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2013年   8篇
  2011年   2篇
  1999年   1篇
  1968年   1篇
排序方式: 共有16条查询结果,搜索用时 46 毫秒
11.
《Environmental Forensics》2013,14(3-4):263-278
The existing Nordtest methodology for oil spill Identification has over the past 10 years formed an important "platform" for solving oil spill identification cases both in the Scandinavian countries as well as other countries in Europe, the USA and Canada. " Revision of the Nordtest Methodology for Oil Spill Identification " is a cooperative project between the National Oil Spill Identification laboratories in Norway, Sweden, Finland, Denmark and the Battelle Memorial Institute (Duxbury) in the USA. The goals of the project are: (1) to refine the existing Nordtest methodology into a technically more robust and defensible oil spill identification methodology with focus on determination of quantitative diagnostic indices (ratios) and (2) to adjust the revised Nordtest methodology into guidelines for the European Committee for Standardization (CEN). This paper presents the recommended methodology for the analytical oil spill identification part. The sampling techniques and handling of oil samples and background (reference) samples prior to their arrival at the environmental forensic laboratory is not covered in this paper. The recommended methodology approach is a result of documented analytical improvements and a more quantitative treatment of analytical data from gas chromatographic-flame ionization detector (GC/FID) and gas chromatographic-mass spectrometer methods (GC/MS-SIM) and the operational experiences over past few years among the participating forensic laboratories. The experience and literature in the field of oil exploration and production geochemistry have also played an important role for the recommended methodology. The results from a recent Round Robin test carried out among 12 laboratories using this new methodology are presented in a separate paper in this issue (Faksness et at ., 2002d).  相似文献   
12.
《Environmental Forensics》2013,14(3-4):251-262
This paper describes a case study in which a multi-criterion approach was used to fingerprinting and identifying mystery oil samples. Three unknown oil samples were received from Quebec on March 28, 2001 for chemical analysis. The main purpose of this analysis was to detemine the nature and the type of the products, detailed hydrocarbon composition of the samples, and whether these samples came from the same source. The samples were analyzed by gas chromatography with a flame ionization detector (GC-FID) and by gas chromatography coupled with mass spectrometry (GC-MS). Hydrocarbon distribution patterns of unknown oils were recognized. Multiple suites of analytes were quantified and compared. A variety of diagnostic ratios of "source-specific marker" compounds for interpreting chemical data were further determined and analyzed. The chemical fingerprinting results reveal the following: (1) These three oils are most likely a hydraulic-fluid type oil. (2) These three oils are very "pure", largely composed of saturated hydrocarbons with the total aromatics being only 4-10% of the TPH. (3) The oils are a mixture of two different hydraulic fluids. There is no clear sign indicating they had been weathered. (4) The PAH concentrations are extremely low (<10 µg/g oil) in the oil samples, while the biomarker concentration are unusually high (4700-5500 µ/g oil). (5) Three major unknown compounds in the oil samples were positively identified. They are antioxidant compounds added to oils. (6) Samples 2996 and 2997 are identical and come from the same source. (7) The sample 2998 has group hydrocarbon compositions (including the GC traces, TPH, and total saturates) very similar to samples 2996 and 2997. But, it is not identical in chemical composition to samples 2996 and 2997, and they do not come from the same source.  相似文献   
13.
《Environmental Forensics》2013,14(3-4):357-366
On 23 July 1995, the oil tanker Sea Prince ran aground near Son Island, off the South Coast of Korea and spilled 5040 tons of crude and fuel oil into the marine environment. The effects of the Sea Prince oil spill on the marine environment have been investigated since 1996. The main objectives of this study were to find out the residual effects of beached oil and transport of dispersed oil into the subtidal area. Twenty-four PARs were analyzed and principal component analysis was performed to elucidate weathering status, bioaccumulation pattern, and input sources. There were signs of bioconcentration of oil-derived PAHs in mussels of stranded oil remained sites. However, environmental factors overwhelmed these so that all the bivalves studied showed similar pattern in the last two sampling campaigns. There was no significant evidence of transport of oil-derived PAHs into the subtidal environment. However, one station showed an exceptionally high concentration (923 ng/g dry weight), which implies the limited input of particle-bound PAHs into this confined area.  相似文献   
14.
The source of crude oils and petroleum products released into navigable waterways and shipping lanes is not always known. Thus, the defensible identification of spilled crude oils and petroleum products and their correlation to suspected sources is a critical part of many oil spill assessments. Quantitative "fingerprinting" analysis, when evaluated using straightforward statistical and numerical analyses, provides a defensible means to differentiate among qualitatively similar oils and provides the best assessment of the source(s) for spilled oils. Polycyclic aromatic hydrocarbon (PAH) and petroleum biomarker concentration data are a particularly useful quantitative measure that can benefit most oil spill investigations. In this paper the strategy and methodology for correlation analysis that relies upon quantitative gas chromatography/mass spectrometry operated in the selected ion monitoring mode (GC/MS-SIM) is demonstrated in a case study involving 66 candidate sources for a heavy fuel oil spill of unknown origin. The strategy includes identification of 19 chemical indices (out of 45 evaluated) based upon PAH's and biomarkers that were (1) independent of weathering; and (2) precisely measured, both of which are determined by statistical analysis of the data. The 19 chemical indices meeting these criteria are subsequently analysed using principal component analysis (PCA), which helps to determine defensibly the "prime suspects" for the oil spill under investigation. The strategy and methodology described, which combines statistical and numerical analysis of quantitative chemical data, can be adapted and applied to other environmental forensic investigations with the objective of correlating any form of contamination to its suspected sources.  相似文献   
15.
Amaral HI  Aeppli C  Kipfer R  Berg M 《Chemosphere》2011,85(5):774-781
The evaluation of biotransformation of chlorinated ethenes (CEs) in contaminated aquifers is challenging when variable redox conditions and groundwater flow regime are limiting factors. By using compound-specific stable carbon isotope analysis (C-CSIA) and 3H-3He based groundwater dating, we assessed three CE-contaminated field sites that differed in groundwater flow velocities, redox conditions, and level of contamination. CE isotopic signatures and carbon isotopic mass balances were applied to quantify CE transformation, whereas groundwater dating allowed determining degradation timescales and assessing hydrodynamic regimes. The combination of these techniques enabled at all field sites to indicate zones within the aquifers where CE dechlorination preferably occurred, sometimes even to metabolites of no toxic concern. However, the natural transformation processes were insufficient to mitigate the entire CE contamination at the studied sites. Such situations of limited transformation are worldwide far more common than sites where optimal natural (mainly redox) conditions are enabling complete CEs degradation. Despite such constraints for natural transformation, this study showed that even under non-favorable biogeochemical CEs degradation, the combination of CSIA and groundwater dating provide valuable information to the understanding of the fate of the CEs, thus, being an important contribution in the definition of efficient remediation measures at any given biogeochemical conditions.  相似文献   
16.
For environmental control purposes, floating oil spills in harbours, off shore areas and their sources must often be identified. Pattern recognition, applied to JR spectrophotometric data (600-2000 cm m 1 range), and to chromatographic data ( n -alkanes) for the spill and various suspected sources such as oil and fuels from ships bunkers and harbour installations, can lead to definite conclusions; particularly after artificial weathering formula are used. The software application provides quick and accurate identification of the pollution source. The identification algorithm has a learning stage in which the user creates a minimal database. This database has a tree structure with classes (fuels, crude, etc.) and members representing samples from already known sources. A sample contains JR and chromatographic data and information of the originating source. A larger database means more knowledge, which conveys a better identification. When the origin of an unknown sample is searched for, the software looks for the best match through the database and displays the results in two lists; sorted by calculated similarity. One list displays the classes in which the unknown sample could be included and the other displays the possible sources. An extra check can be done by visual inspection of the overlapped graphics (unknown sample and each of the identified sources).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号