首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   17篇
  国内免费   207篇
安全科学   14篇
环保管理   57篇
综合类   263篇
基础理论   46篇
污染及防治   66篇
评价与监测   7篇
  2024年   1篇
  2023年   4篇
  2022年   10篇
  2021年   14篇
  2020年   15篇
  2019年   14篇
  2018年   17篇
  2017年   18篇
  2016年   19篇
  2015年   23篇
  2014年   14篇
  2013年   16篇
  2012年   27篇
  2011年   31篇
  2010年   23篇
  2009年   30篇
  2008年   17篇
  2007年   29篇
  2006年   32篇
  2005年   16篇
  2004年   23篇
  2003年   11篇
  2002年   11篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有453条查询结果,搜索用时 500 毫秒
411.
卤乙酸是饮用水氯化消毒中一类主要的消毒副产物,由于存在的广泛性和潜在的健康危害,许多国家和卫生组织相继将其列为饮用水常规监测项目,而我国至今还没有相关规定;为了更好地控制饮用水中卤乙酸的形成,世界各国科研人员先后研究和开发出了性能逐趋完善的多种分析检测方法;本文在国内外文献调研的基础上,对卤乙酸的各种分析检测方法进行了简要的介绍,并指明了今后的发展方向.  相似文献   
412.
为了探究紫外LED应用于深海油田注水消毒的可行性,通过静态实验考察了255、280、350 nm紫外线对腐生菌、铁细菌和硫酸盐还原菌的消毒能力,并结合光电转换效率考察各紫外LED的能耗差异;此外,考察了水质因素对紫外线透射率及紫外LED灭活异养菌效果的影响.结果表明,紫外LED的单位灭活率能耗受紫外线灭活速率常数和该波长紫外LED的光电转换效率共同影响,尽管255 nm紫外线对腐生菌、铁细菌和硫酸盐还原菌灭活速率常数最大,但280 nm紫外LED针对受试菌种的单位灭活率能耗最低;颗粒物和铁离子等水质因素主要通过影响紫外线透射率对消毒效果产生影响,当紫外线透射率较高时对消毒效果的影响不大;驱动电流相同时,280 nm紫外LED对高细菌负荷水样的消毒更有优势.  相似文献   
413.
针对传统消毒技术的安全风险问题,以维护供水管网水质安全为目标,引入茶多酚作为辅助消毒剂和紫外线消毒联用,模拟供水管网系统探究不同管材和水力停留时间下紫外线-茶多酚联合消毒的消毒效果,分析管壁生物膜形貌和菌落分布的变化.结果表明,75mg/L是紫外线-茶多酚联合消毒时茶多酚的较优投加量,可保持48h消毒效果.模拟管网运行过程中整体水质较好,但管材对管网消毒效果的影响较大,30d内球墨铸铁和UPVC管网中细菌量超过100CFU/mL的频率分别为80%和0%,紫外线-茶多酚联合消毒在UPVC管网中消毒持续性较强.与紫外线消毒相比,紫外线-茶多酚联合消毒对管壁生物膜的破坏效果更明显,且对生物膜中的蓝藻菌和肠道致病菌杀灭效果更强,有利于保障管网水质的安全性.  相似文献   
414.
利用自主研发的新型三角孔多孔板水力空化装置对胜利河原水进行消毒处理,采用压力数据采集系统采集水力空化工作段压力、显微镜观察菌体形态变化、平板计数法计数菌落总数、酶底物法检测总大肠菌群和大肠埃希氏菌;研究了三角孔多孔板的水流空化数、孔口大小、孔口数量、孔口排列和原水浓度梯度对水力空化杀灭原水中病原微生物的影响.结果表明:选择适当的原水浓度、增大孔口数量、减小孔口大小以及改进孔口排列方式(如交错式)时,均可进一步提高原水中病原微生物杀灭率.菌群杀灭率在5min时可达到稳定高效杀灭值,15min时菌落总数杀灭率可达80%以上,总大肠菌群和大肠埃希氏菌杀灭率均可达90%以上,甚至完全杀灭.  相似文献   
415.
Channelization is one of the most common solutions to urban drainage problems, despite the fact that channelized streams are frequently morphologically unstable, biologically unproductive, and aesthetically displeasing. There is increasing empirical and theoretical evidence to suggest that channelization may be counterproductive unless channels are designed to prevent the bank erosion and channel silting that often accompanies stream dredging. Many of the detrimental effects of channelization can be avoided, with little compromise in channel efficiency, by employing channel design guidelines that do not destroy the hydraulic and morphologic equilibria that natural streams possess. These guidelines include minimal straightening; promoting bank stability by leaving trees, minimizing channel reshaping, and employing bank stabilization techniques; and, emulating the morphology of natural stream channels. This approach, called stream restoration or stream renovation, is being successfully employed to reduce flooding and control erosion and sedimentation problems on streams in Charlotte, North Carolina.  相似文献   
416.
Iodine containing disinfection by-products (I-DBPs) and haloacetaldehydes (HALs) are emerging disinfection by-product (DBP) classes of concern. The former due to its increased potential toxicity and the latter because it was found to be the third most relevant DBP class in mass in a U.S. nationwide drinking water study. These DBP classes have been scarcely investigated, and this work was performed to further explore their formation in drinking water under chlorination and chloramination scenarios. In order to do this, iodo-trihalomethanes (I-THMs), iodo-haloacetic acids (I-HAAs) and selected HALs (mono-HALs and di-HALs species, including iodoacetaldehyde) were investigated in DBP mixtures generated after chlorination and chloramination of different water matrices containing different levels of bromide and iodide in laboratory controlled reactions. Results confirmed the enhancement of I-DBP formation in the presence of monochloramine. While I-THMs and I-HAAs contributed almost equally to total I-DBP concentrations in chlorinated water, I-THMs contributed the most to total I-DBP levels in the case of chloraminated water. The most abundant and common I-THM species generated were bromochloroiodomethane, dichloroiodomethane, and chlorodiiodomethane. Iodoacetic acid and chloroiodoacetic acid contributed the most to the total I-HAA concentrations measured in the investigated disinfected water. As for the studied HALs, dihalogenated species were the compounds that predominantly formed under both investigated treatments.  相似文献   
417.
Swimming has become a popular exercising and recreational activity in China but little is known about the disinfection by-products (DBPs) concentration levels in the pools. This study was conducted as a survey of the DBPs in China swimming pools, and to establish the correlations between the DBP concentrations and the pool water quality parameters. A total of 14 public indoor and outdoor pools in Beijing were included in the survey. Results showed that the median concentrations for total trihalomethanes (TTHM), nine haloacetic acids (HAA9), chloral hydrate (CH), four haloacetonitriles (HAN4), 1,1-dichloropropanone, 1,1,1-trichloropropanone and trichloronitromethane were 33.8, 109.1, 30.1, 3.2, 0.3, 0.6 µg∙L−1 and below detection limit, respectively. The TTHM and HAA9 levels were in the same magnitude of that in many regions of the world. The levels of CH and nitrogenous DBPs were greatly higher than and were comparable to that in typical drinking water, respectively. Disinfection by chlorine dioxide or trichloroisocyanuric acid could substantially lower the DBP levels. The outdoor pools had higher TTHM and HAA9 levels, but lower trihaloacetic acids (THAA) levels than the indoor pools. The TTHM and HAA9 concentrations could be moderately correlated with the free chlorine and total chlorine residuals but not with the total organic carbon (TOC) contents. When the DBP concentration levels from other survey studies were also included for statistical analysis, a good correlation could be established between the TTHM levels and the TOC concentration. The influence of chlorine residual on DBP levels could also be significant.  相似文献   
418.
The combination of low-dose ozone with ultraviolet (UV) irradiation should be an option to give benefit to disinfection and reduce drawbacks of UV and ozone disinfection. However, less is known about the disinfection performance of UV and ozone (UV/ozone) coexposure and sequential UV-followed-by-ozone (UV- ozone) and ozone-followed-by-UV (ozone-UV) expo- sures. In this study, inactivation of E. coli and bacterioph- age MS2 by UV, ozone, UV/ozone coexposure, and sequential UV-ozone and ozone-UV exposures was investigated and compared. Synergistic effects of 0.5-0.9 log kill on E. coli inactivation, including increases in the rate and efficiency, were observed after the UV/ozone coexposure at ozone concentrations as low as 0.05 mg-L-1 in ultrapure water. The coexposure with 0.02-mg.L-1 ozone did not enhance the inactivation but repressed E. coli photoreactivation. Little enhancement on E. coli inactivation was found after the sequential UV-ozone or ozone-UV exposures. The synergistic effect on MS2 inactivation was less significant after the UV/ozone coexposure, and more significant after the sequential ozone-UV and UV-ozone exposures, which was 0.2 log kill for the former and 0.8 log kill for the latter two processes, at ozone dose of 0.1 mg. t-1 and UV dose of 8.55 mJ. cm 2 in ultrapure water. The synergistic effects on disinfection were also observed in tap water. These results show that the combination of UV and low-dose ozone is a promising technology for securing microbiological quality of water.  相似文献   
419.
紫外线消毒技术的发展及应用分析   总被引:4,自引:1,他引:3  
介绍了紫外消毒技术的发展及其与传统加氯消毒的对比分析,并提及紫外线消毒在工程设计中应注意的几个问题,对紫外消毒技术的应用前景作了一个简单的预测。  相似文献   
420.
This research work was performed to evaluate ozonation and granular activated carbon adsorption processes from the view‐point of controlling the formation of disinfection by products (DBPs). Both the humic acid and raw water were first preozonated and then adsorbed on the activated carbon to assess the potency for removal of total organic carbon (TOC) and DBPs. The disinfection by‐product including THMs and HAAs, in principle, can be successfully removed through a use of the ozonation and granular activated carbon (GAC) adsorption processes. However, in practice dealing with the raw water, it is necessary to introduce the pilot‐plant to obtain the design and operation guidelines for the water treatment plant through the ICA (Instrumentation Control and Automation) program in our future research work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号