首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1137篇
  免费   105篇
  国内免费   438篇
安全科学   85篇
废物处理   146篇
环保管理   130篇
综合类   769篇
基础理论   180篇
环境理论   2篇
污染及防治   227篇
评价与监测   100篇
社会与环境   41篇
  2024年   3篇
  2023年   15篇
  2022年   27篇
  2021年   24篇
  2020年   21篇
  2019年   26篇
  2018年   31篇
  2017年   42篇
  2016年   46篇
  2015年   75篇
  2014年   69篇
  2013年   87篇
  2012年   125篇
  2011年   120篇
  2010年   73篇
  2009年   87篇
  2008年   72篇
  2007年   92篇
  2006年   135篇
  2005年   80篇
  2004年   47篇
  2003年   67篇
  2002年   45篇
  2001年   42篇
  2000年   42篇
  1999年   37篇
  1998年   28篇
  1997年   23篇
  1996年   28篇
  1995年   15篇
  1994年   16篇
  1993年   12篇
  1992年   7篇
  1991年   9篇
  1990年   6篇
  1989年   4篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1680条查询结果,搜索用时 15 毫秒
991.
In this study, the absorption of carbon dioxide using an absorbent composed of 2-amino-2-methyl-L-propanol (AMP) + monoethanolamine (MEA) + piperazine (PZ) in asymmetric and symmetric polytetrafluoroethylene (PTFE) membrane contactors was investigated. Experiments were conducted using various gas flow rates, liquid flow rates, and absorbent blends. CO(2) recovery increased with increasing liquid flow rates. The mean pore size of PTFE membrane reduced via heating treatment. An asymmetric membrane had a better CO(2) recovery than a symmetric membrane. For the asymmetric membrane, placing the smaller pore-size side of the membrane in contact with the liquid phase, reduced the level of wetting of the membrane. The membrane mass transfer coefficient and durability of the PTFE membrane were enhanced by asymmetrically heating.  相似文献   
992.
Carbon capture and storage (CCS) is a developing technology which raises a number of issues in terms of safety. CCS involves a chain of processes comprising capture of carbon dioxide, transport and injection into underground storage. In work carried out for the IEA Greenhouse Gas R&D Programme, a number of high-level hazard identification (HAZID) studies have been performed with the help of industry experts. The HAZIDs considered a carbon capture and storage chain involving capture, pipeline transport and injection. HAZID has been performed at a high-level for such a CCS chain with three types of capture technology and using pipeline transport. It is hoped that the results of the HAZID studies will be of use to those carrying out CCS projects, but should not be a substitute for them carrying out a full suite of integrated hazard management processes. A number of example hazards have been described to raise awareness of the range of hazards in a CCS process and to identify barriers which could prevent, minimise, control or mitigate CCS hazards. Bow-tie diagrams have been produced to record the information from this study and to organise it in a systematic way so that it is far less likely that contributors to and mitigators of hazards will be missed. The diagrams are available in Excel spreadsheet format so that they can be used as the starting point for development by specific CCS projects. CCS technology is still advancing and a number of knowledge gaps in terms of safety have been identified which require further development.  相似文献   
993.
气体二氧化氯的光降解规律研究   总被引:1,自引:0,他引:1  
为研究气体二氧化氯的光降解规律,利用自行设计的光降解装置,考察不同波长光源、温度和气体二氧化氯初始质量浓度对其降解速率的影响,同时以暗室降解作为参比试验。结果表明:分别在365 nm紫外光、日光、254 nm紫外光以及400~700 nm荧光照射下,相同初始质量浓度的气体二氧化氯的降解速率逐渐下降;当温度在15~25℃范围变化时,相同初始质量浓度的气体二氧化氯的日光降解速率基本相同;不同质量浓度的气体二氧化氯在日光照射下,降解速率随气体质量浓度的增加而增大。因此,对气体二氧化氯的光降解起主要作用的波长是在365 nm附近的紫外光;温度对其降解速率基本没有影响;在日光照射下,气体二氧化氯的降解速率与质量浓度的一次方成正比,属于一级反应,其半衰期与初始质量浓度无关,仅与反应速率常数k有关,半衰期约为63 min。  相似文献   
994.
To devise and implement strategies to manage the quality of urban air, a metropolis needs air pollution data on which an air quality management plan can be formulated. Although air pollutants can come from several sources, many reports suggest that nitrogen dioxide from motor vehicle emissions is the major contributor to air pollution in cities. Since vehicles stop or move slowly through traffic intersections, concentrations of nitrogen dioxide (NO(2)) are expected to be relatively high at these sites. Inexpensive Ogawa passive samplers were placed at selected traffic intersections in the Durban Metropolis to trap the NO(2) which was then analysed by a sensitive laboratory-based method. The data obtained by this method was compared with data from sophisticated system comprising an active sampler cum on-line chemiluminescence detector. The sampling was done over a twelve month period to cover all seasons. Statistical analysis of the data showed that there was no significant difference between the means for the two methods. This study has established that an Ogawa passive sampler may be used as an economical and reliable collector for NO(2) in ambient air under varying climatic conditions. Further, the analysis method using a UV-Visible spectrophotometer was sensitive enough to detect NO(2) at the 10-20 ppb level. The cost of the method should be well within the budgets of most municipalities and it would motivate them to develop policies to alleviate traffic congestion.  相似文献   
995.
In this work, the rate of absorption of carbon dioxide by aqueous ammonia solvent has been studied by applying a newly built wetted wall column. The absorption rate in aqueous ammonia was measured at temperatures from 279 to 304 K for 1 to 10 wt% aqueous ammonia with loadings varying from 0 to 0.8 mol CO2/mol NH3. The absorption rate in 30 wt% aqueous mono-ethanolamine (MEA) was measured at 294 and 314 K with loadings varying from 0 to 0.4 as comparison.It was found that at 304 K, the rate of absorption of carbon dioxide by 10 wt% NH3 solvent was comparable to the rates for 30 wt% MEA at 294 and 314 K (a typical absorption temperature for this process). The absorption rate using ammonia was however significantly lower at temperatures of 294 K and lower as applied in the Chilled Ammonia Process. However, at these low temperatures, the rate of absorption in ammonia has only a small temperature dependency.The rate of absorption decreases strongly with decreasing ammonia concentrations and increasing CO2 loadings.The rate of absorption of carbon dioxide by aqueous ammonia solvent was modeled using the measurements of the unloaded solutions and the zwitter-ion mechanism. The model could successfully predict the experimental measurements of the absorption rate of CO2 in loaded ammonia solutions.  相似文献   
996.
近年来,大气污染问题已然成为热门话题。大气污染不仅危害中国生态环境和居民健康,甚至可能对其他邻近国家产生影响。哈尔滨地处中国东北部地区,空气质量变化具有区域性特征。本文在参阅了大量参考文献的基础上,结合哈尔滨市2010年-2012年与2012年1~12月份的空气质量数据,对哈尔滨市的大气质量变化规律及影响因素进行了分析。确定了哈尔滨市大气环境质量的级别和首要污染物以及影响空气质量变化的主要影响因素。  相似文献   
997.
Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A^2O process had the highest CO2 emission factor of 319.3 g CO2/kg CODremoved, and the highest CH4 and N2O emission factors of 3.3 g CH4/kg CODremoved and 3.6 g N2O/kg TNremoved were observed in the Orbal oxidation ditch process.  相似文献   
998.
现代煤化工行业二氧化硫排放特征分析及对策建议   总被引:2,自引:0,他引:2  
随着新型煤化工行业在国内的迅猛发展,由此带来的大气污染问题不容忽视.本文通过对我国已建的大型煤化工项目进行调研,研究不同煤化产品的生产工艺、二氧化硫产生机理;对典型煤化工项目做硫平衡分析,估算煤化工工艺过程中的非正常排放情况.结果表明:生产装置开停车或出现故障时的非正常排放具有瞬间产生浓度高、排放量大等特点,是当前我国新型煤化工产业最重要的二氧化硫排放来源.  相似文献   
999.
Carbon dioxide pipeline is an essential carrier in carbon capture, utilization, and storage (CCUS). Statistically revealing the accident rate and risk of carbon dioxide pipelines is conducive to integrity management. Based on 112 accident records collected from Pipeline & Hazardous Materials Safety Administration, this work analyzes the frequency, rate, and risk of accidents. In addition, the impact of relevant factors on risk is further discussed. Some primary conclusions are as follows: (1) For carbon dioxide pipelines, the leak is the leading form of accident. Most carbon emissions are generated in the form of leakage, but economic losses are mainly generated in other forms. (2) The pipelines that have been in service for 0–10 years have the highest frequency of accidents and the highest proportion of carbon emissions, but the pipelines that have been in service for 11–20 years have caused the most economic losses. (3) Among the accident causes, the number of accidents caused by equipment failure is the highest, while the economic loss caused by natural force damage is the highest, and the carbon emission caused by material failure is the highest.  相似文献   
1000.
采用沉淀法合成了纳米级二氧化锆,利用SEM、XRD技术,对纳米ZrO_2进行微观形貌和粒径分析,探讨了吸附时间、吸附温度、pH值以及Pb~(2+)初始浓度对吸附的影响,分析了吸附热力学性质和动力学特性,初步探讨了吸附机理。研究结果表明:在吸附温度为40℃,Pb~(2+)初始浓度为10 mg/L,pH为4.5时,吸附反应40 min后,最大吸附量为17.8 mg/g;纳米ZrO_2对Pb~(2+)吸附等温线符合Langmuir模型,其吸附动力学过程以准二级动力学方程拟合效果最好;温度在303~323 K时,纳米ZrO_2吸附Pb~(2+)的吉布斯自由能ΔG~o<0、焓变ΔH~o<0、熵变ΔS~o<0,表明纳米ZrO_2对Pb~(2+)的吸附是一个自发放热过程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号