首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   89篇
  国内免费   475篇
安全科学   20篇
废物处理   30篇
环保管理   31篇
综合类   670篇
基础理论   32篇
污染及防治   97篇
评价与监测   98篇
社会与环境   6篇
  2024年   6篇
  2023年   48篇
  2022年   77篇
  2021年   101篇
  2020年   89篇
  2019年   54篇
  2018年   69篇
  2017年   55篇
  2016年   45篇
  2015年   35篇
  2014年   44篇
  2013年   56篇
  2012年   50篇
  2011年   45篇
  2010年   32篇
  2009年   27篇
  2008年   26篇
  2007年   17篇
  2006年   29篇
  2005年   15篇
  2004年   15篇
  2003年   13篇
  2002年   7篇
  2001年   8篇
  2000年   10篇
  1999年   4篇
  1998年   7篇
排序方式: 共有984条查询结果,搜索用时 15 毫秒
121.
蔺波涛  施冬梅 《装备环境工程》2015,12(3):121-126,146
综述了弹药库房中有毒有害气体的来源和危害,以及去除挥发性有机物的技术方法,介绍了光催化降解理论基础、光催化剂的结构和改性措施、吸附剂的种类和吸附-光催化复合材料的制备方法,指出了当前光催化降解挥发性有机物存在的主要问题,结合弹药库房实际环境,提出了未来主要的研究方向。  相似文献   
122.
以18辆轻型汽油车(LDGVs)为研究对象,利用底盘测功机搭建挥发性有机物(VOCs)采样系统.利用气相色谱-质谱仪(GC-MS)和高效液相色谱(HPLC)识别了匀速25 km·h~(-1)时尾气VOCs化学成分谱和排放因子,并在分析时考虑了排放标准、行驶工况和车辆属性等因素的影响.结果表明,轻型汽油车低速匀速工况下尾气组成以烷烃(40.8%,C_5~C_7烷烃较多)为主,其次是芳香烃(29.5%)和含氧VOCs(26.0%),烯炔烃(3.6%)和卤代烃(0.1%)较少.其中,甲醛、异戊烷、甲苯、苯、间/对二甲苯、丙酮、2-甲基戊烷、正戊烷、1,2,4-三甲基苯和壬醛是比例最高的物质(52.01%).低速匀速行驶中生成了比例更低的烯烃和比例更高的C_5~C_7烷烃和OVOCs.排放标准为国III、IV和V的轻型汽油车在低速匀速工况下,VOCs排放因子分别为(50.12±46.83)、(40.26±31.15)和(3.25±0.65) mg·km~(-1).国IV到国V车的烷烃、烯炔烃、芳香烃、卤代烃和总VOCs降幅均超过88%,而OVOCs降幅只有约55%,说明OVOCs在国V车的排放富集程度更高.总体来讲,国V车排放的VOCs反应活性约为国IV车排放的VOCs反应活性的11%.车辆属性对VOCs排放的影响表现为:年份、里程和排量的增加会促进VOCs排放的整体增加,而基准质量对VOCs排放的影响相对较小.  相似文献   
123.
某石油化工园区秋季VOCs污染特征及来源解析   总被引:2,自引:4,他引:2  
利用快速连续在线自动监测系统对某典型石油化工园区2014年秋季(9、10、11月)大气中VOCs进行监测,并对其组成、光化学反应活性、时间变化特征和来源进行解析.结果表明:秋季大气中VOCs的混合体积分数明显高于国内外其他城市和工业地区,且烷烃是大气中VOCs的最主要成分.研究区秋季3个月份大气中VOCs的混合体积分数之间差异不显著,但各种烃类的日夜变化特征明显:烷烃、烯烃和芳香烃呈现"单峰单谷"变化趋势,乙炔的变化趋势呈"W"型.PMF受体模型解析结果表明主要来源于天然气交通及溶剂、炼油厂的泄漏或挥发等过程,其次为其他交通来源,沥青对于研究区VOCs来源也有一定的贡献.等效丙烯体积和最大臭氧生成潜势对VOCs的光化学反应活性计算结果表明,烯烃和烷烃分别是各自混合体积分数的最主要的贡献者.  相似文献   
124.
工业VOCs气体处理技术应用状况调查分析   总被引:16,自引:0,他引:16       下载免费PDF全文
在调研大量工业VOCs气体处理工程案例的基础上,分析了不同工业VOCs气体处理技术的应用状况,包括不同处理技术在国内外的市场占有率、处理气体流量、VOCs浓度、VOCs种类以及所应用的行业等.结果表明,催化氧化、吸附、生物法是应用较多的VOCs处理技术.冷凝、膜分离和吸附工艺多用于处理浓度大于10000mg/m3的VOCs气体,并可回收VOCs;催化燃烧、热力燃烧工艺多用于处理浓度2000~10000 mg/m3且不具回收价值的VOCs气体;生物处理、等离子体多用于处理浓度低于2000mg/m3的VOCs气体.在进行VOCs处理技术选择时,应综合考虑VOCs气体特性(VOCs浓度、流量、温湿度、颗粒物含量)、VOCs处理技术的技术经济性能、排放标准等因素.  相似文献   
125.
2021年2~4月,利用AQMS-900VCM大气挥发性有机物在线监测系统对南昌市经济技术开发区大气中114种挥发性有机化合物(VOCs)进行了在线观测,分析了春季南昌市大气中VOCs浓度水平、日变化,估算了各种VOCs的臭氧生成潜势(OFP),并基于PMF模型探讨了 VOCs的来源.结果表明,南昌市经济技术开发区20...  相似文献   
126.
针对石化行业面源无组织排放VOCs难以准确定量的问题,建立了基于开路式傅里叶变换红外光谱技术(OP-FTIR)的面源污染源源强反演模型,并进行了现场模拟试验。试验结果表明,风向、风速、大气稳定度、监测距离、数据处理周期等都是影响反演模型准确性的重要灵敏度参数。以反演源强QP与实际排放量Q的比值(QP/Q)为量化指标,对各影响因素进行优化处理,确定了构建反演模型适用的边界条件。当各灵敏度参数稳定于适用边界条件之内时,QP/Q为0.85~0.90。  相似文献   
127.
朱禹寰  陈冰  张雅铷  刘晓  李光耀  舍静  陈强 《环境科学》2023,44(7):3669-3675
准确判断臭氧(O3)生成敏感性对O3污染成因分析和防控对策的制定至关重要.首次利用响应曲面方法设计最优试验方案,基于盒子模式模拟结果,快速量化O3对其前体物变化的响应.结果表明,CO对O3有正贡献,NOxVOCs与O3呈现显著非线性关系,当φ(VOCs)与[φ(NOx)-13.75]比值大于4.17时,为NOx控制区,小于4.17时,为VOCs控制区;烯烃为影响O3生成的关键VOCs组分,当φ(烯烃)与[φ(NOx)-15]比值小于1.10且φ(烯烃)<35×10-9时,烯烃有利于O3的生成.响应曲面法在多因素和其交互作用对O3生成影响的研究中取得了良好效果,为高效判断O3敏感性提供了新的思路和方法.  相似文献   
128.
利用2019年和2020年夏季沈阳市工业区大气挥发性有机物(VOCs)的观测数据,研究沈阳市夏季工业区大气VOCs的组成特征并初步判断其来源,并利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)法分别估算该地大气VOCs的臭氧生成潜势(OFP)及二次有机气溶胶生成潜势(AFP).结果表明,观测期间沈阳市工业区ρ(总VOCs)平均值为41.66μg·m-3,烷烃、烯烃、芳香烃和乙炔分别占总VOCs浓度的48.50%、 14.08%、 15.37%和22.05%.浓度排名前10的物种累计占总VOCs浓度的69.25%,其中大部分为C2~C5的烷烃,还包括乙炔、乙烯和部分芳香烃.总VOCs整体上呈现出早晚浓度高、中午浓度低的日变化特征,峰值分别出现在06:00和22:00,11:00~16:00处于较低水平.由甲苯/苯(T/B)和异戊烷/正戊烷的比值判断工业区主要受机动车尾气排放、溶剂使用、燃烧源和LPG/NG的影响.工业区大气VOCs的总AFP为41.43×10-2μg·m-3,其中芳香烃的贡献最大;总OFP贡献值为1...  相似文献   
129.
中国工业源挥发性有机物排放清单   总被引:8,自引:5,他引:8  
以工业源挥发性有机物(VOCs)为研究对象,在前期建立的工业源典型污染源分类系统基础上,对污染源系统和重要污染源排放系数进行修正和更新,采用排放系数法建立了2018年我国工业源VOCs排放清单.结果表明, 2018年我国工业源VOCs排放量为12 698 kt.含VOCs产品的使用环节贡献最大,占工业源排放总量的59%.工业涂装、印刷和包装印刷、基础化学原料制造、汽油储存与运输和石油炼制是排放量贡献最大的5大污染源,占工业源排放总量的54%;广东、山东、浙江和江苏是工业VOCs贡献最大的4个省份,排放总量占工业源VOCs总量的41%.海南、宁夏、西藏、黑龙江和新疆这5个省单位工业增加值VOCs排放强度最大,均超过了80 t·(亿元)-1.大多数省份工业VOCs排放主要来自含VOCs产品的使用环节;采用Monte Carlo模拟2018年我国工业源VOCs排放清单95%置信区间不确定度为[-32%, 48%].  相似文献   
130.
2018年8月采集太原市大气样品,分析太原市夏季大气VOCs的污染特征,并利用最大增量反应活性系数法(MIR系数法)估算了VOCs的臭氧生成潜势(OFP).结果表明,太原市夏季大气VOCs浓度为17.36~89.60μg/m3,其中烷烃占比58.01%、芳香烃占比20.06%、烯烃占比16.52%、炔烃占比5.40%.大气VOCs浓度变化表现为明显的早晚双高峰特征,且以早高峰影响为主.OFP分析显示,烷烃、烯烃、芳香烃、炔烃分别占总OFP的19.16%、47.74%、31.75%、1.35%,C3~C5类烯烃是活性较高的物种,对O3生成贡献较大.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号