首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1600篇
  免费   50篇
  国内免费   172篇
安全科学   50篇
废物处理   50篇
环保管理   229篇
综合类   1041篇
基础理论   99篇
污染及防治   265篇
评价与监测   72篇
社会与环境   16篇
  2024年   1篇
  2023年   12篇
  2022年   20篇
  2021年   17篇
  2020年   26篇
  2019年   32篇
  2018年   23篇
  2017年   18篇
  2016年   26篇
  2015年   36篇
  2014年   61篇
  2013年   55篇
  2012年   81篇
  2011年   130篇
  2010年   69篇
  2009年   125篇
  2008年   87篇
  2007年   138篇
  2006年   104篇
  2005年   89篇
  2004年   83篇
  2003年   87篇
  2002年   76篇
  2001年   64篇
  2000年   54篇
  1999年   67篇
  1998年   57篇
  1997年   54篇
  1996年   21篇
  1995年   21篇
  1994年   28篇
  1993年   23篇
  1992年   9篇
  1991年   8篇
  1990年   3篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1822条查询结果,搜索用时 15 毫秒
221.
钢铁企业总排口废水回用新工艺应用   总被引:2,自引:0,他引:2  
就当前国内几个典型的钢铁企业总排口废水水质特性作了分析,探索钢铁企业废水回收利用的工艺路线,提出在吸收国外新技术的基础上研究开发出符合国情的新工艺技术.  相似文献   
222.
ABSTRACT: The Phoenix metropolitan area has a unique combination of circumstances which makes it one of the prime areas in the Nation for waste water reuse. Overriding all of these conditions is the long-term inadequacy of the existing water supplies. The Salt River Valley has a ground water overdraft of about 700,000 acre feet per year. To help alleviate this situation, the Corps of Engineers in conjunction with the MAG 208 is looking at ways to reuse a projected 2020 waste water flow of 340,000 acre feet per year. Reuse options identified include ground water recharge, agricultural irrigation, turf irrigation, recreational lakes, fish and wildlife habitats, and industrial cooling. These look nice on paper but before they can be implemented, some hard questions have to be answered, such as: How acceptable are local treatment plants when 15 years ago there was a major push to eliminate local plants; is the Phoenix area ready for reuse in urban areas; what are people willing to pay for water; who benefits if a city goes to ground water recharge; how much agriculture will be left in the area by 2020? These and other questions must be resolved if reuse is to become a viable option in water resource planning in the Phoenix area. Summary. Large scale reuse of waste water conforms with the national goal of better resource management through recycling. The Phoenix metropolitan area has a unique combination of circumstances which makes it one of the prime areas in the nation for waste water reuse. Some of the most notable conditions are: the existence of a large and rapidly growing urban area which is in the process of planning for future waste water management systems; the existence of agricultural areas which are projected to be farmed well into the future, and the existence of constructed and planned major recreational systems such as Indian Bend Wash which can use recycled waste water; the existence of extensive depleted ground water aquifers; the need for a dependable source for the cooling of the Palo Verde Nuclear reactors; and finally, overriding all of this, the long-term inadequacy of the existing water supplies. Given this, one would expect to find total reuse within the Phoenix metropolitan area. Reuse is taking place with irrigation and nuclear power cooling to the west but there is no long term plan which looks at the Valley as a whole and considers waste water as part of the Valley's water resources. The Corps 208 plan is looking at waste water in this manner but initial analysis shows that although reuse is technically feasible there are many financial, social, institutional, and political questions still to be answered. These include: determining the value of existing diminishing water sources and what people are willing to pay for the next source of water; are people willing to identify priority uses of water for the area so that water of varying quality is put to its highest and best use; will the present institutional boundaries remain to create water-rich and water-poor areas; and will legislation be forthcoming to simplify the complex surface and ground water laws that presently exist? The Corps 208 study will not be able to answer these questions, but the goal at the moment is to identify feasible reuse systems along with decisions the public, owners, agencies, and politicians must make to select and implement them. If some sort of logical process is not developed and public awareness not increased, the chance for a long-term plan to utilize waste water as a major element in the Phoenix area water resource picture, may be missed.  相似文献   
223.
This article documents the general need to reuse water reclaimed from sewage effluents for beneficial purposes and then considers in detail which specific uses will be most beneficial. The analysis begins by describing five levels of wastewater treatment: primary, secondary, tertiary, advanced, and advanced plus complete treatment. Next, five major uses for reclaimed water are identified: groundwater recharge, industrial use, irrigation, recreational lakes, and direct municipal reuse. Subcategories of reuse falling under each of the five major reuse categories are also identified and discussed. The analysis then proceeds to review significant literature available on health and environmental effects, treatment and distribution costs, and public opinion concerns in relation to each of the five major uses and their related subcategories. The paper concludes with a cumulative numerical analysis of the disbenefits associated with each specific type of reuse summed over the health effects, environmental effects, treatment costs, distribution costs, and public opinion concerns. Uses of reclaimed water for industrial purposes and for irrigation of fodder and fiber crops are found to be most beneficial by the analysis here employed, and use for aquifer recharge and direct municipal reuse are found to be least beneficial.  相似文献   
224.
A batch recycle removal of copper ions from an industrial effluent by means of copper foam cathodes was tested. A constant current of 750 A was applied to the cell in order to perform the reduction. Copper depletion was investigated at different solution flow rates and a removal greater than 98% was obtained with a flow rate of 1000 l/h. The influence of initial metal concentration on copper deposition and current efficiency is also discussed.  相似文献   
225.
The treatments of municipal solid waste (MSW) and the domestic sewage (DS) are critical issues of the current political and environment discussions. These concerns are due to the lack of dumping areas, the continuous increase of the population, and public health issues. The adequate treatment and management of MSW and DS can produce many benefits such as financial funds, heat and energy production, reduction of emissions and recuperation of water for reuse. Currently in Campinas MSW and DS are deposited in landfills or discharged into rivers and other sites. In the present study two scenarios are evaluated for the treatment of MSW and DS in Campinas: recycling with biological treatment and recycling with thermal treatment. The most suitable treatments for Campinas, based on the data from the present analysis and taking into consideration the local conditions, maximization of energy potential and environmental benefits, are incineration for the MSW and biological treatment for DS, both with energy recuperation. The main gains of this option are substantial environmental benefits, generated energy which can reach 18% of the total electrical energy consumed in Campinas while about 53% recuperation of the total amount of water treated for Campinas in 2010.  相似文献   
226.
对失去大部分活性的微生物膜进行再培养,以研究膜再利用的可能性。试验结果初部表明:在1/2MS培养基中加入一定量的植物激素,不仅可以使膜的电位值(I0)显著升高,且活性强,稳定性好,可使膜重复利用。  相似文献   
227.
《Chemistry and Ecology》2007,23(5):409-425
The use of a new sorbent developed from the husk of pomegranate, a famous fruit in Egypt, for the removal of toxic chromium from aqueous solution has been investigated. The batch experiment was conducted to determine the adsorption capacity of the pomegranate husk. The effects of initial metal concentration (25 and 50 mg l-1), pH, contact time, and sorbent concentration (2-6 g l-1) have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increased as the pH decreased, and the optimum pH value was pH 1.0. Adsorption equilibrium and kinetics were studied with different sorbent and metal concentrations. The adsorption process was fast, and equilibrium was reached within 3 h. The maximum removal was 100% for 25 mg l-1 of Cr6+ concentration on 5 g l-1 pomegranate husk concentration, and the maximum adsorption capacity was 10.59 mg g-1. The kinetic data were analysed using various kinetic models—pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion equations—and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich, and Generalized isotherm equations. The Elovich and pseudo-second-order equations provided the greatest accuracy for the kinetic data, while Langmuir and Generalized isotherm models were the closest fit for the equilibrium data. The activation energy of sorption has also been evaluated as 0.236 and 0.707 kJ mol-1 for 25 and 50 mg l-1 chromium concentration, respectively.  相似文献   
228.
采用浸出-焙烧-化学分析和显微镜观察等手段查明了牛仔布印染污泥主要由纤维碎和浮石矿物组成。分析了牛仔布印染污泥的浸出物特性及模拟渗滤液的组成。渗滤液含Zn、Pb、Cr等重金属,AS、P和NH3-N超过地表水环境质量Ⅳ类水标准,简易填埋会对环境造成二次污染。分析提出了该类污泥的资源化途径,可用作吸附剂、水泥、轻质陶粒和岩棉的原料。  相似文献   
229.
Could wastewater analysis be a useful tool for China? — A review   总被引:1,自引:0,他引:1  
Analysingwastewater samples is an innovative approach that overcomesmany limitations of traditional surveys to identify and measure a range of chemicals that were consumed by or exposed to people living in a sewer catchment area. First conceptualised in 2001, much progress has been made to make wastewater analysis (WWA) a reliable and robust tool for measuring chemical consumption and/or exposure. At the moment, the most popular application of WWA, sometimes referred as sewage epidemiology, is to monitor the consumption of illicit drugs in communities around the globe, including China. The approach has been largely adopted by lawenforcement agencies as a device tomonitor the temporal and geographical patterns of drug consumption. In the future, themethodology can be extended to other chemicals including biomarkers of population health (e.g. environmental or oxidative stress biomarkers, lifestyle indicators or medications that are taken by different demographic groups) and pollutants that people are exposed to (e.g. polycyclic aromatic hydrocarbons, perfluorinated chemicals, and toxic pesticides). The extension of WWA to a huge range of chemicals may give rise to a field called sewage chemical-information mining (SCIM) with unexplored potentials. China has many densely populated cities with thousands of sewage treatment plants which are favourable for applying WWA/SCIM in order to help relevant authorities gather information about illicit drug consumption and population health status. However, there are some prerequisites and uncertainties of the methodology that should be addressed for SCIM to reach its full potential in China.  相似文献   
230.
Heterogeneous membranes were obtained by using styrene-acrylonitrile copolymer (SAN) blends with low content of ion-exchanger particles (5 wt.%). The membranes obtained by phase inversion were used for the removal of copper ions from synthetic wastewater solutions by electrodialytic separation. The electrodialysis was conducted in a three cell unit, without electrolyte recirculation. The process, under potentiostatic or galvanostatic control, was followed by pH and conductivity measurements in the solution. The electrodialytic performance, evaluated in terms of extraction removal degree (rd) of copper ions, was better under potentiostatic control then by the galvanostatic one and the highest (over 70%) was attained at 8 V. The membrane efficiency at small ion-exchanger load was explained by the migration of resin particles toward the pores surface during the phase inversion. The prepared membranes were characterized by various techniques i.e. optical microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and differential thermal analysis and contact angle measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号