首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3167篇
  免费   87篇
  国内免费   185篇
安全科学   143篇
废物处理   21篇
环保管理   765篇
综合类   1308篇
基础理论   201篇
污染及防治   272篇
评价与监测   583篇
社会与环境   111篇
灾害及防治   35篇
  2023年   42篇
  2022年   43篇
  2021年   71篇
  2020年   97篇
  2019年   48篇
  2018年   48篇
  2017年   84篇
  2016年   106篇
  2015年   119篇
  2014年   144篇
  2013年   157篇
  2012年   127篇
  2011年   237篇
  2010年   86篇
  2009年   237篇
  2008年   200篇
  2007年   201篇
  2006年   154篇
  2005年   135篇
  2004年   120篇
  2003年   117篇
  2002年   109篇
  2001年   87篇
  2000年   91篇
  1999年   81篇
  1998年   80篇
  1997年   61篇
  1996年   42篇
  1995年   52篇
  1994年   65篇
  1993年   40篇
  1992年   24篇
  1991年   19篇
  1990年   10篇
  1989年   7篇
  1988年   11篇
  1987年   7篇
  1986年   12篇
  1985年   8篇
  1984年   6篇
  1983年   2篇
  1982年   7篇
  1981年   5篇
  1980年   7篇
  1979年   9篇
  1978年   6篇
  1974年   2篇
  1973年   5篇
  1969年   2篇
  1968年   2篇
排序方式: 共有3439条查询结果,搜索用时 31 毫秒
991.
We reviewed organophosphorus pesticide use in Japan between 1982 and 2016 using data from the National Institute of Environmental Studies. Organophosphorus pesticide concentrations in river water throughout Japan were taken from the literature, and risk assessments were performed for some organophosphorus pesticides based on risk quotients and hazard quotients. Assessments were performed for 20 common pesticides, including insecticides, fungicides, and herbicides. The amounts used decreased in the order: insecticides?>?herbicides?>?fungicides. Organophosphorus insecticide and fungicide use have decreased over the last four decades, but organophosphorus herbicide use has increased. During this period, annual organophosphorus pesticide use was the highest for chlorpyrifos (105,263?tons/year) and the lowest for glyphosate-sodium (8?tons/year). The ecotoxicological risk assessment indicated that diazinon and fenitrothion posed strong risks to the Japanese aquatic environment, and chlorpyrifos and malathion have moderate risks. None of the pesticides that were assessed posed significant risks to humans. Continued use of organophosphorus pesticides in Japan may cause strong risks to aquatic environments. These risks should be reassessed periodically.  相似文献   
992.
The lack of fresh water in the world makes the search for an effective method to decontaminate water an urgent priority. An important step is to remove different multivalent ions in salt treatment. Nanofiltration (NF) has been used for treating water containing different kinds of salts. In this work, sulfonate group-modified graphene oxide (SGO) was prepared, and added during the interfacial polymerization (IP) reaction to prepare SGO-modifiedNF membranes (PA-SGO). The chemical composition, structure and surface properties of PA and PA-SGO membranes were characterized by FT-IR, XPS, SEM, AFM, contact angle and zeta potential measurements. Their water flux, salt rejection and anti-fouling abilities were investigated systematically. The testing results showed that the water flux of PA-SGO (0.03% SGO) was 45.85 LMH under a pressure of 0.2?MPa, and the salt rejection varied in the order of Na2SO4 (98.99%)?>?MgSO4 (91.25%)?>?MgCl2 (42.27%)?>?NaCl (21.96%). An anti-fouling experiment indicated that the PA-SGO membrane had good anti-fouling properties because of its decreased roughness and increased hydrophilicity and electronegativity. The PA-SGO membrane has good potential for use in removing salt ions from water.  相似文献   
993.
Intensification of pollution loading worldwide has promoted an escalation of different types of disease-causing microorganisms, such as harmful algal blooms(HABs), instigating detrimental impacts on the quality of receiving surface waters. Formation of unwanted disinfection by-products(DBPs) resulting from conventional disinfection technologies reveals the need for the development of new sustainable alternatives. Quaternary Ammonium Compounds(QACs) are cationic surfactants widely known for their effective biocidal properties at the ppm level. In this study, a novel silica-based antimicrobial nanofilm was developed using a composite of silica-modified QAC(Fixed-Quat) and applied to a fiberglass mesh as an active surface via sol–gel technique. The synthesized Fixed-Quat nanocoating was found to be effective against E. coli with an inactivation rate of 1.3 × 10~(-3) log reduction/cm min. The Fixed-Quat coated fiberglass mesh also demonstrated successful control of Microcystis aeruginosa with more than 99% inactivation after 10 hr of exposure.The developed antimicrobial mesh was also evaluated with wild-type microalgal species collected in a water body experiencing HABs, obtaining a 97% removal efficiency. Overall,the silica-functionalized Fixed-Quat nanocoating showed promising antimicrobial properties for water disinfection and HABs control, while decreasing concerns related to DBPs formation and the possible release of toxic nanomaterials into the environment.  相似文献   
994.
The removal of algal organic matter(AOM) is a growing concern for the water treatment industry worldwide. The current study investigates coagulation of non-proteinaceous AOM(AOM after protein separation), which has been minimally explored compared with proteinaceous fractions. Jar tests with either aluminum sulphate(alum) or polyaluminium chloride(PACl) were performed at doses of 0.2–3.0 mg Al per 1 mg of dissolved organic carbon in the p H range 3.0–10.5. Additionally, non-proteinaceous matter was characterized in terms of charge, molecular weight and carbohydrate content to assess the treatability of its different fractions. Results showed that only up to 25% of non-proteinaceous AOM can be removed by coagulation under optimized conditions. The optimal coagulation p H(6.6–8.0 for alum and 7.5–9.0 for PACl) and low surface charge of the removed fraction indicated that the prevailing coagulation mechanism was adsorption of non-proteinaceous matter onto aluminum hydroxide precipitates. The lowest residual Al concentrations were achieved in very narrow p H ranges, especially in the case of PACl. High-molecular weight saccharidelike organics were amenable to coagulation compared to low-molecular weight( 3 k Da)substances. Their high content in non-proteinaceous matter(about 67%) was the reason for its low removal. Comparison with our previous studies implies that proteinaceous and nonproteinaceous matter is coagulated under different conditions due to the employment of diverse coagulation mechanisms. The study suggests that further research should focus on the removal of low-molecular weight AOM, reluctant to coagulate, with other treatment processes to minimize its detrimental effect on water safety.  相似文献   
995.
Cyanobacterial blooms are global phenomena that can occur in calm and nutrient-rich(eutrophic) fresh and marine waters. Human exposure to cyanobacteria and their biologically active products is possible during water sports and various water activities, or by ingestion of contaminated water. Although the vast majority of harmful cyanobacterial products are confined to the interior of the cells, these are eventually released into the surrounding water following natural or artificially induced cell death. Electrochemical oxidation has been used here to damage cyanobacteria to halt their proliferation, and for microcystin degradation under in-vitro conditions. Partially spent Jaworski growth medium with no addition of supporting electrolytes was used. Electrochemical treatment resulted in the cyanobacterial loss of cell-buoyancy regulation, cell proliferation arrest, and eventual cell death. Microcystin degradation was studied separately in two basic modes of treatment: batch-wise flow, and constant flow, for electrolytic-cell exposure. Batch-wise exposure simulates treatment under environmental conditions, while constant flow is more appropriate for the study of boron-doped diamond electrode efficacy under laboratory conditions. The effectiveness of microcystin degradation was established using high-performance liquid chromatography–photodiode array detector analysis, while the biological activities of the products were estimated using a colorimetric protein phosphatase-1 inhibition assay. The results indicate potential for the application of electro-oxidation methods for the control of bloom events by taking advantage of specific intrinsic ecological characteristics of bloom-forming cyanobacteria. The applicability of the use of boron-doped diamond electrodes in remediation of water exposed to cyanobacteria bloom events is discussed.  相似文献   
996.
The potentially hazardous iron-containing sludge from the Fenton process requires proper treatment and disposal, which often results in high treatment cost. In this study, a novel method for the reuse of Fenton sludge as an iron source for the synthesis of nickel ferrite particles(NiFe_2O_4) is proposed. Through a co-precipitation method followed by sintering at 800°C, magnetic NiFe_2O_4 particles were successfully synthesized, which was confirmed by powder X-ray diffraction(XRD), scanning electronic microscopy(SEM), energy dispersive spectroscopy(EDS), Fourier transform infrared spectroscopy(FT-IR) and Raman spectroscopy. The synthesized NiFe_2O_4 could be used as an efficient catalyst in the heterogeneous Fenton process. In phenol degradation with H_2O_2 or NiFe_2O_4 alone, the phenol removal efficiencies within the reaction time of 330 min were as low as 5.9% ± 0.1% and 13.5% ±0.4%, respectively. However, in the presence of both NiFe_2O_4 and H_2O_2, phenol removal efficiency as high as 95% ± 3.4% could be achieved, indicating the excellent catalytic performance of NiFe_2O_4 in the heterogeneous Fenton process. Notably, a rapid electron exchange between_Ni II and_Fe III ions in the NiFe_2O_4 structure could be beneficial for the Fenton reaction. In addition, the magnetic catalyst was relatively stable, highly active and recoverable, and has potential applications in the Fenton process for organic pollutant removal.  相似文献   
997.
This paper reports a template-free method to synthesize a series of inorganic hollow spheres (IHSs) including Cu-1, Cu-2, Ni-1, Ni-2 based on mineralization reactions at water/“water-brother” interfaces. “Water-brother” was defined as a solvent which is miscible with water, such as ethanol and acetone. The water/“water-brother” interfaces are very different from water/oil interfaces. The “water-brother” solvent will usually form a homogenous phase with water. Interestingly, in our method, these interfaces can be formed, observed and utilized to synthesize hollow spheres. Utilizing the unique porous properties of the spheres, their potential application in water treatment was demonstrated by using Cu-1 IHSs as Fenton-like reagents for adsorption and decomposition of Congo Red from aqueous solution. The final adsorption equilibrium was achieved after 30 min with the maximum adsorption capacity of 86.1 mg/g, and 97.3% removal of the dye in 80 min after adsorption equilibrium. The IHSs can be reused as least 5 times after treatment by NaOH. This method is facile and suitable for large-scale production, and shows great potential for watertreatment.  相似文献   
998.
Water quality forecasting is an essential part of water resource management. Spatiotemporal variations of water quality and their inherent constraints make it very complex. This study explored a data-based method for short-term water quality forecasting. Prediction of water quality indicators including dissolved oxygen, chemical oxygen demand by KMnO4 and ammonia nitrogen using support vector machine was taken as inputs of the particle swarm algorithm based optimal wavelet neural network to forecast the whole status index of water quality. Gubeikou monitoring section of Miyun reservoir in Beijing, China was taken as the study case to examine effectiveness of this approach. The experiment results also revealed that the proposed model has advantages of stability and time reduction in comparison with other data-driven models including traditional BP neural network model, wavelet neural network model and Gradient Boosting Decision Tree model. It can be used as an effective approach to perform short-term comprehensive water quality prediction.  相似文献   
999.
水足迹强度是可以量化水资源利用效率的指标,文章在计算江苏省水足迹的基础上,选取6项水足迹强度指标,分部门比较各地市水资源利用效率的差异,并基于ESDA研究水足迹强度的空间自相关性,构建空间集聚图。研究表明:2002~2014年江苏省各市水足迹总体呈现上升趋势,水资源压力增大;总体上苏南和苏北地区的农业水足迹强度都偏高,农业水资源利用效率低;苏南地区工业产值高但耗水量大,因此工业水足迹强度也偏高;苏北地区的灰水足迹强度偏高,水资源压力较大;江苏省水足迹强度具有不断增强的全局自相关性,地市出现集聚现象,不同地市的集聚分布也日益明显;大部分苏北地区属于高高集聚并且向外扩张,低低集聚主要分布在苏南地区。研究结果为政府部门分析地市间水资源利用效率差异,制定高效的水资源利用政策等提供依据。  相似文献   
1000.
考察两组微氧水解强化复合型人工湿地(MA-HCW)组合的中试反应器,对城市黑臭水体的净化处理效果。两组反应器分别种植风车草和菖蒲两种植物,运行的水力负荷为0.2 m~3/(m~2·d)。结果表明,种植风车草的人工湿地系统(A系统)的总体净化效果略优于种植菖蒲的人工湿地系统(C系统)。A系统的COD、BOD5、TN、NH_4~+-N、TP、TSS平均去除率分别为69.65%、75.2%、58.33%、38.46%、59.8%、82.1%。研究表明,微氧水解功能段有效降低了进水中TSS的浓度,起到预防湿地系统堵塞的作用。数据分析显示COD、NH _4~+-N和TN的去除率与溶解氧和温度有相关性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号